Paper
PCCP
overlapped with the acetyl methyl signals. Complexation means
that the water content of chloroform can be considerably
higher than when without peracetylated CDs.
9 B. Chankvetadze, G. Endresz and G. Blaschke, Chem. Soc.
Rev., 1996, 25, 141–153.
10 H. J. Schneider, F. Hacket and V. R u¨ diger, Chem. Rev., 1998,
98, 1755–1785.
Host and guest proton signals, and often water signals,
overlap which made the determination of the chemical shifts 11 B. Chankvetadze, Chem. Soc. Rev., 2004, 33, 337–347.
of the interacting moieties difficult and prone to large relative 12 M. Karplus, J. Am. Chem. Soc., 1963, 85, 2870–2871.
errors. Structural changes in CDs upon interaction with the 13 C. Altona and M. Sundaralingam, J. Am. Chem. Soc., 1973,
guest molecule affect all CD protons, regardless of their spatial
interactions in the complexation process. The water proton 14 J. E. H. K o¨ hler, M. Hohla, M. Richters and W. K o¨ nig, Angew.
NMR signal showed different shift directions upon increasing
Chem., Int. Ed. Engl., 1992, 31, 319–320.
the aromatic ester molar ratio: a downfield shift in the cases 15 T. K ¨o pke, H. G. Schmarr and A. Mosandl, Flavour Fragrance
95, 2333–2344.
of PAcaCD and PAcbCD and an upfield shift in the case of
PAcgCD.
J., 1992, 7, 205–211.
16 I. Abe, N. Fujimoto and T. Nakahara, J. Chromatogr. A, 1994,
676, 469–473.
The interaction between apolar CD derivatives and polar (water)
or apolar guests (1,4-bis(2-ethylhexyl)benzene-1,4-dicarboxylate) 17 C. Bicchi, V. Manzin, A. D’Amato and P. Rubiolo, Flavour
was confirmed via NMR. The peracetyl CD–water complexes are
Fragrance J., 1995, 10, 127–137.
dominantly found in a 1 : 1 molar ratio with moderate complex 18 K. Freudenberg and R. Jacobi, Justus Liebigs Ann. Chem.,
stability constants. Both peracetyl-a- and -bCDs seem to form three
1935, 518, 102–108.
component complexes with 1 : 1, 1 : 2, and 2 : 1 molecular ratios 19 M. Komiyama, H. Yamamoto and H. Hirai, Chem. Lett.,
between CDs and esters, while the guest can exclude water from
1984, 1081–1084.
the peracetyl-gCD cavity by forming dominantly 1 : 1 molecular 20 C. Baudin, B. Perly and A. Gadelle, EP Pat., 787744 A1
associations.
970806, 1997.
2
2
1 C. Baudin, F. Tardy, J.-P. Dalbiez, C. Jankowski, C. Fajolles,
G. Leclair, B. Amekraz, B. Perly and L. Mauclaire, Carbohydr.
Res., 2005, 340, 131–138.
2 K. A. Kopytin, S. Y. Kudryashov and L. A. Onuchak, Russ.
J. Phys. Chem. A, 2012, 86, 147–150.
Acknowledgements
This research was kindly funded by the European Community’s
Seventh Framework Program through the EU project MAPSYN: 23 K. Matsubara, T. Kuriki, H. Arima, K. Wakamatsu, T. Irie and
Microwave, Acoustic and Plasma Syntheses, under grant agree-
ment No. CP-IP 309376. P. Cintas thanks the Ministry of
K. Uekama, Minutes of the 5th International Symposium on
Cyclodextrins, Paris, 1990, p. 491.
Economy and Competitiveness (Project CTQ2013-44787-P) and 24 M. Thunhorst and U. Holzgrabe, Magn. Reson. Chem., 1998,
the Junta de Extremadura-FEDER (Grant GR15022) for financial
36, 211–216.
support. Financial support from Resilia SRL (Samarate, Italy) is 25 J. Zmitek, D. Fercej-Temeljotov, K. Verhnjak, S. Kotnik and
acknowledged. The authors acknowledge the assistance and
M. Kovacic, EP Pat., 578231 A1, 1994.
suggestions of Orsolya T o¨ ke (MTA-TKK, Budapest, Hungary) in 26 T. Kitagawa, A. Okamoto, T. Kanai, K. Shibayama, T. Aoki
and S. Yamakawa, EP Pat., 970936, 2000.
Cyclolab Ltd, Budapest, Hungary) in manuscript preparation. 27 L. Kim, A.-D. Stancu, E. Diacu, H.-J. Buschmann and
´
NMR experiments, and the invaluable help of Eva Fenyvesi
(
L. Mutihac, Supramol. Chem., 2009, 21, 131–134.
8 E. Diacu, L. Mutihac, E. Ruse and M. M. Ceausescu,
J. Inclusion Phenom. Macrocyclic Chem., 2011, 71, 339–342.
9 Z. P. Onuchak, L. A. Burmatnova, T. S. Spiryaeva, E. A.
Kuraeva and Y. G. Belousova, Russ. J. Phys. Chem. A, 2012,
86, 1308–1317.
2
2
References
1
G. Uccello-Barretta, G. Sicoli, F. Balzano and P. Salvadori,
Carbohydr. Res., 2003, 338, 1103–1107.
2
M. R. Caira, G. Bettinetti, M. Sorrenti, L. Catenacci, 30 C. M. Buchanan, D. W. Dixon, R. J. Offermann, J. Szejtli,
D. Cruickshank and K. Davies, Chem. Commun., 2007,
221–1223.
K. Harata, Chem. Lett., 1998, 589–590.
L. Szente and M. Vikmon, Minutes of the 10th International
Symposium on Cyclodextrins, Michigan, 2000, p. 586.
31 M. Y. Lee, H. S. Ganapathy and K. T. Lim, J. Phys. Chem.
Solids, 2010, 71, 630–633.
1
3
4
M. A n˜ ibarro, K. Gessler, I. Uson, G. M. Sheldrick, K. Harata,
K. Uekama, F. Hirayama, Y. Abe and W. Saenger, J. Am. 32 G. Gattuso, C. Gargiulli and M. F. Parisi, Int. J. Mol. Sci.,
Chem. Soc., 2001, 123, 11854–11862.
2007, 8, 1052–1063.
5
6
7
L. Fielding, Tetrahedron, 2000, 56, 6151–6170.
M. J. Hynes, J. Chem. Soc., Dalton Trans., 1993, 311–312.
33 G. Uccello-Barretta, F. Balzano, A. Cuzzola, R. Menicagli and
P. Salvadori, Eur. J. Org. Chem., 2000, 449–453.
G. Uccello-Barretta, L. Vanni and F. Balzano, J. Chromatogr. A, 34 B. Z. Yu, J. W. Chung and S.-Y. Kwak, Environ. Sci. Technol.,
010, 1217, 928–940. 2008, 42, 7522–7527.
H. Dodziuk, W. Kozminski and A. Ejchart, Chirality, 2004, 35 J. Rodriguez, D. Hern ´a n Rico, L. Domenianni and D. Laria,
2
8
16, 90–105.
J. Phys. Chem. B, 2008, 112, 7522–7529.
This journal is ©the Owner Societies 2015
Phys. Chem. Chem. Phys., 2015, 17, 17380--17390 | 17389