Communication
ChemComm
2
3
4
X. Liu, W. Chi, Q. Qiao, S. V. Kokate, E. P. Cabrera, Z. Xu, X. Liu and
Y. Chang, ACS Sens., 2020, 5, 731–739.
L. Li, K. Li, M. Li, L. Shi, Y. Liu, H. Zhang, S. Pan, N. Wang, Q. Zhou
and X. Yu, Anal. Chem., 2018, 90, 5873–5878.
W. H. Chen, G. F. Luo and X. Z. Zhang, Adv. Mater., 2018,
3
1, 1802725.
5
6
T. Hosoi and K. Ozawa, Clin. Sci., 2009, 118, 19.
C. Hetz, J. M. Axten and J. B. Patterson, Nat. Chem. Biol., 2019, 15,
7
64–775.
7
8
9
K. Bi, R. Tan, R. Hao, L. Miao, Y. He, X. Wu, J. Zhang and R. Xu,
Chin. Chem. Lett., 2019, 30, 545–548.
S. Long, Q. Qiao, L. Miao and Z. Xu, Chin. Chem. Lett., 2019, 30,
573–576.
H. He, T. He, Z. Zhang, X. Xu, H. Yang, X. Qian and Y. Yang, Chin.
Chem. Lett., 2018, 29, 1497–1499.
Fig. 4 FLIM of Ir-PH with different concentrations of Tm (A) blank;
À1
À1
À1
(
B) 20 mg mL ; (C) 30 mg mL ; (D) 50 mg mL ; and (E) calculated lifetimes
1
0 H. Qin, L. Li, K. Li and X. Yu, Chin. Chem. Lett., 2019, 30,
of Ir-PH in A549 cells.
71–74.
1
1
1
1 K. K.-W. Lo, Acc. Chem. Res., 2020, 53, 32–44.
2 R. Zhang and J. Yuan, Acc. Chem. Res., 2020, 53, 1316–1329.
3 L. Hao, Z. Li, D. Zhang, L. He, W. Liu, J. Yang, C. Tan, L. Ji and
Z. Mao, Chem. Sci., 2019, 10, 1285–1293.
around or above 20 ns were red. It was obvious that with the
addition of Tm, the Ir-PH displayed slightly longer lifetimes.
The calculated average fluorescence lifetime of Ir-PH was 14 M. Zhang, M. Wen, Y. Xiong, L. Zhang and C. Tian, Chin. Chem.
Lett., 2018, 29, 1509–1512.
5 X. Li, Y. Yin, P. Gao, W. Li, H. Yan, C. Lu and Q. Zhao, Dalton Trans.,
1
1.15 Æ 0.55 ns in the A549 cells with untreated Tm. With
1
the addition of Tm, the lifetime becomes longer and longer;
2017, 46, 13802–13810.
À1
when the concentration of Tm was 50 mg mL , the calculated 16 J. S. Nam, M. Kang, J. Kang, S. Park, S. J. C. Lee, H. Kim, J. K. Seo,
O. Kwon, M. H. Lim, H. Rhee and T. Kwon, J. Am. Chem. Soc., 2016,
average lifetime was 17.3 Æ 1.2 ns. The lifetime of Ir-PH was
138, 10968–10977.
calculated using three exponentials in A549 cells. However, the
cellular environment is pretty complicated compared with
water–glycerol mixtures. Therefore, Ir-PH might be appropriate
for relative quantitative tests of ER viscosity and for the absolute
quantitative detection but a standard curve was measured firstly.
In conclusion, we have designed and successfully synthe-
sized three purine-based iridium complexes for imaging of ER.
We offered an effective method to design viscosity-sensitive
1
1
1
7 X. Li, J. Wu, L. Wang, C. He, L. Chen, Y. Jiao and C. Duan,
Angew. Chem., Int. Ed., 2020, 132, 6482–6489.
8 C. Li, Y. Wang, Y. Lu, J. Guo, C. Zhu, H. He, X. Duan, M. Pan and
C. Su, Chin. Chem. Lett., 2020, 31, 1183–1187.
9 C. Caporale, C. A. Bader, A. Sorvina, K. D. M. MaGee, B. W. Skelton,
T. A. Gillam, P. J. Wright, P. Raiteri, S. Stagni, J. L. Morrison,
S. E. Plush, D. A. Brooks and M. Massi, Chem. – Eur. J., 2017, 23,
15666–15679.
20 K. Zhang, T. Zhang, H. Wei, Q. Wu, S. Liu, Q. Zhao and W. Huang,
Chem. Sci., 2018, 9, 7236–7240.
iridium(III) complexes by using the change of torsion angles. 21 J. Calder ´o n-Arancibia, C. Espinosa-Bustos,
´
A.
Ca n˜ ete-Molina,
R. Tapia, M. Fa u´ ndez, M. Torres, A. Aguirre, M. Paulino and
C. Salas, Molecules, 2015, 20, 6808–6826.
Between them, the fluorescence intensity and lifetime of Ir-PH
displayed a regular response to the environmental viscosity.
The subcellular localization experiment results indicated that
Ir-PH could exclusively accumulate in the ER. Besides, due to its
viscosity-sensitive lifetimes, Ir-PH could distinguish the
2
2 C. Lambertucci, M. Buccioni, D. Dal Ben, S. Kachler, G. Marucci,
A. SpinaciM, A. Thomas, K. Klotze and R. Volpini, Med. Chem.
Commun., 2015, 6, 963–970.
23 M. Welsch, S. Snyder and B. Stockwell, Curr. Opin. Chem. Biol., 2010,
347–361.
changes under ER stress of cells by fluorescence lifetime image 24 L. Shi, K. Li, L. Li, S. Chen, M. Li, Q. Zhou, N. Wang and X. Yu,
microscopy, which provides a new clue for relative quantitative
Chem. Sci., 2018, 9, 8969–8974.
2
5 L. Shi, Y.-H. Liu, K. Li, A. Sharma, K.-K. Yu, M. Ji, L.-L. Li, Q. Zhou,
H. Zhang, J. S. Kim and X.-Q. Yu, Angew. Chem., Int. Ed., 2020, 59,
9962–9966.
detection of microenvironment changes at the subcellular level.
This work was financially supported by the National Natural
Science Foundation of China (No. 22077088, and 21877082)
and the Foundation from Science and Technology Department
of Sichuan Province (2020JDJQ0017). We also thank Cheng-Hui
2
2
6 L. Shi, K. Li, Y.-H. Liu, X.-Y. Liu, Q. Zhou, Q. Xu, S.-Y. Chen and
X.-Q. Yu, Chem. Commun., 2020, 56, 3661–3664.
7 P. Zhang, H. Chen, H. Huang, K. Qiu, C. Zhang, H. Chao and
Q. Zhang, Dalton Trans., 2019, 48, 3990–3997.
Li and Peng Wu from the Analytical & Testing Center at Sichuan 28 F. Liu, J. Wen, S. Chen and S. Sun, Chem. Commun., 2018, 54,
1
371–1374.
University for their helpful discussion about the FLIM imaging.
2
3
3
9 L. He, C. Tan, R. Ye, Y. Zhao, Y. Liu, Q. Zhao, L. Ji and Z. Mao,
Angew. Chem., Int. Ed., 2014, 53, 12137–12141.
0 G. Li, C. Gao, H. Xie, H. Chen, D. Liu, W. Sun, G. Chen and Z. Niu,
Chin. Chem. Lett., 2016, 27, 428–432.
1 C. Tan, S. Lai, S. Wu, S. Hu, L. Zhou, Y. Chen, M. Wang, Y. Zhu,
W. Lian, W. Peng, L. Ji and A. Xu, J. Med. Chem., 2010, 53,
Conflicts of interest
There are no conflicts to declare.
7
613–7624.
3
2 M. J. Leitl, V. A. Krylova, P. I. Djurovich, M. E. Thompson and
Notes and references
H. Yersin, J. Am. Chem. Soc., 2014, 136, 16032–16038.
1
A. B. Goins, H. Sanabria and M. N. Waxham, Biophys. J., 2008, 95, 33 D. Lee, I. Y. Kim, S. Saha and K. S. Choi, Pharmacol. Ther., 2016, 162,
5362–5373.
120–133.
2268 | Chem. Commun., 2021, 57, 2265À2268
This journal is The Royal Society of Chemistry 2021