Journal of Chemical & Engineering Data
Article
(3) Chapeaux, A.; Simoni, L. D.; Ronan, T. S.; Stadtherr, M. A.;
Brennecke, J. F. Extraction of alcohols from water with 1-hexyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide. Green Chem.
2008, 10 (12), 1301−1306.
(4) Zhang, Q.; Li, Z.; Zhang, J.; Zhang, S.; Zhu, L.; Yang, J.; Zhang,
X.; Deng, Y. Physicochemical Properties of Nitrile-Functionalized
Ionic Liquids. J. Phys. Chem. B 2007, 111, 2864−2872.
(5) Muhammad, N.; Man, Z.; Bustam Khalil, M. Ionic liquida
future solvent for the enhanced uses of wood biomass. Eur. J. Wood
Wood Prod. 2012, 70, 125−133.
(6) Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff,
S.; Wierzbicki, A.; Davis, J. H.; Rogers, R. D. Task-Specific Ionic
Liquids for the Extraction of Metal Ions from Aqueous Solutions.
Chem. Commun. 2001, 36, 135−136.
(7) Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff,
S.; Wierzbicki, A.; Davis, J. H.; Rogers, R. D. Task-Specific Ionic
Liquids Incorporating Novel Cations for the Coordination and
Extraction of Hg2+ and Cd2+: Synthesis, Characterization, and
Extraction Studies. Environ. Sci. Technol. 2002, 36, 2523−2529.
(8) Liu, X.-M.; Song, Z.-X.; Wang, H.-J. Density Functional Theory
Study on the −SO3H Functionalized Acidic Ionic Liquids. Struct.
Chem. 2009, 20, 509−515.
(9) Schrekker, H. S.; Stracke, M. P.; Schrekker, C. M. L.; Dupont, J.
Ether-functionalized imidazolium hexafluorophosphate ionic liquids
for improved water miscibilities. Ind. Eng. Chem. Res. 2007, 46 (22),
7389−7392.
(10) Paul, A.; Samanta, A. Solute Rotation and Solvation Dynamics
in an Alcohol-Functionalized Room Temperature Ionic Liquid. J. Phys.
Chem. B 2007, 111, 4724−4731.
(11) Nockemann, P.; Thijs, B.; Parac-Vogt, T. N.; Hecke, K. V.;
Meervel,t, L. V.; Tinant, B.; Hartenbach, I.; Schleid, T.; Ngan, V. T.;
Nguyen, M. T.; Binnemans, K. Carboxyl-Functionalized Task-Specific
Ionic Liquids for Solubilizing Metal Oxides. Inorg. Chem. 2008, 47,
9987−9999.
(12) Zhao, D.; Fei, Z.; Scopelliti, R.; Dyson, P. J. Synthesis and
Characterization of Ionic Liquids Incorporating the Nitrile Function-
ality. Inorg. Chem. 2004, 43, 2197−2205.
(13) Kim, J. Y.; Kim, T. H.; Kim, D. Y.; Park, N.-G.; Ahn, K.-D.
Novel thixotropic gel electrolytes based on dicationic bis-imidazolium
salts for quasi-solid-state dye-sensitized solar cells. J. Power Sources
2008, 175, 692−697.
(14) Lateef, H.; Grimes, S.; Kewcharoenwong, P.; Feinberg, B.
Separation and recovery of cellulose and lignin using ionic liquids: a
process for recovery from paper based waste. J. Chem. Technol.
Biotechnol. 2009, 84 (12), 1818−1827.
(15) Ziyada, A. K.; Wilfred, C. D.; Bustam, M. A.; Man, Z.;
Murugesan, T. Thermophysical Properties of 1-Propyronitrile-3-
alkylimidazolium Bromide Ionic Liquids at Temperatures from
(293.15 to 353.15) K. J. Chem. Eng. Data 2010, 55, 3886−3890.
(16) Muhammad, N.; Man, Z. B.; Bustam, M. A.; Mutalib, M. I. A.;
Wilfred, C. D.; Rafiq, S. Synthesis and Thermophysical Properties of
Low Viscosity Amino Acid-Based Ionic Liquids. J. Chem. Eng. Data
2011, 56, 3157−3162.
(17) Muhammad, A.; Mutalib, M. I. A.; Wilfred, C. D.; Murugesan,
T.; Shafeeq, A. Thermophysical properties of 1-hexyl-3-methyl
imidazolium based ionic liquids with tetrafluoroborate, hexafluor-
ophosphate and bis(trifluoromethylsulfonyl)imide anions. J. Chem.
Thermodyn. 2008, 40, 1433−1438.
(18) Ye, C.; Shreeve, J. n. M. Rapid and Accurate Estimation of
Densities of Room-Temperature Ionic Liquids and Salts. J. Phys. Chem.
A 2007, 111 (8), 1456−1461.
(19) Gu, Z.; Brennecke, J. F. Volume expansivities and isothermal
compressibilities of Imidazolium and Pyridinium-based ionic liquids. J.
Chem. Eng. Data 2002, 47, 339−345.
(20) Taib, M. M.; Ziyada, A. K.; Wilfred, C. D.; Murugesan, T.
Thermophysical properties of 1-propyronitrile-3-hexylimidazolium
bromide + methanol at temperatures (293.15 to 323.15) K. J. Mol.
Liq. 2011, 158 (2), 101−104.
Table 11. Onset Ts and Glass Temperatures Tg: Midpoint for
[C2CN Rim]Cl
[C2CNBim]
Cl
[C2CNAim]
Cl
[C2CNHEim]
Cl
[C2CN Bzim]
Cl
property
Ts/K
Tg/K
263.82
267.92
268.06
271.67
282.42
287.65
284.16
289.36
measured from cooling side, and Tg was measured as the
midpoint in the small change of DSC trace. All the synthesized
ionic liquids were room temperature. The ionic liquids in the
order of increasing Tg are [C2CNBim]Cl < [C2CNAim]Cl <
[C2CNHEim]Cl < [C2CN Bzim]Cl. Lower values of Tg are
reported for other nitrile-functionalized ionic liquids, which
might be due to different side chains attached to the imidazole
ring.4
CONCLUSIONS
■
Some new types of dual functionalized imidazolium-based ionic
liquids, namely, of [C2CNBim]Cl, [C2CNAim]Cl,
[C2CNHEim]Cl, and [C2CNBzim]Cl, have been synthesized,
and their thermophysical properties, viscosity, density, and
refractive indices, were measured. Different viscosities are
observed for each type of ionic liquid which is attributed to
different strengths of intermolecular interactions (hydrogen
bonding, pi−pi interaction, van der Waals interactions, etc.) in
each ionic liquid molecule. The viscosity increases in the order
of [C2CNBim]Cl < [C2CNAim]Cl < [C2CNHEim]Cl <
[C2CNBzim]Cl. The densities of three ionic liquids, namely,
[C2CNBim]Cl, [C2CNAim]Cl, and [C2CNBzim]Cl, are in the
range of reported values for nitrile-containing ionic liquids;
however, the density for [C2CNHEim]Cl is higher. They also
exhibit higher refractive index compared to other reported
nitrile-containing ionic liquids. In general, their thermophysical
properties of viscosity, density, and refractive index decrease as
temperature increases. The coefficient of thermal expansion is
considered to be independent of temperature in the range of
(293.15 to 353.15) K, as no appreciable change was observed
with an increase of temperature. The high thermal decom-
position temperature of [C2CNHEim]Cl is attributed to more
high hydrogen bonding. The Tg values observed for these ionic
liquids are higher compared to those reported for nitrile-based
ionic liquids.
ASSOCIATED CONTENT
* Supporting Information
Additional Figures 1 and 2. This material is available free of
■
S
AUTHOR INFORMATION
Corresponding Author
*Tel.: 006053687702. Fax: 006053687598. E-mail:
■
Funding
This work has been supported by PETRONAS Ionic Liquid
Center, Department of Chemical Engineering, Universiti
Teknologi PETRONAS, Malaysia.
REFERENCES
■
(1) Earle, M. J.; Seddon, K. R. Ionic liquids. Green solvents for the
future. Pure Appl. Chem. 2000, 72, 1391−1398.
(2) Li, X. R. Green solvents: synthesis and application of ionic liquids;
China Chemical Industry Press: Beijing, 2005; pp 298−300.
742
dx.doi.org/10.1021/je200710t | J. Chem. Eng. Data 2012, 57, 737−743