Organic Letters
Letter
photoresponse in the range from 300 to 700 nm, which is
contributed by both donor and acceptor. The maximal EQE is
AUTHOR INFORMATION
■
*
*
5
7% with the spectra peak at 550 nm. The EQE spectra of the
The charge mobility of the pure acceptor and SubPcTI:PM6
ORCID
2
9
(
Notes
electron mobility (μ ) of the pure films was calculated to be on
e
−
5
2
−1 −1
the magnitude order of 1 × 10 cm V s ; the blended
films showed similar μ , while their hole mobility (μ ) was ∼1
10 cm V s . Blend films have relatively balanced carrier
mobility with μ /μ of 9.91−19.72. These results demonstrate
the four acceptors have good charge-transporting properties for
photovoltaic applications.
e
h
−
4
2
−1 −1
×
The authors declare no competing financial interest.
h
e
ACKNOWLEDGMENTS
■
AFM and transmission electron microscopy (TEM) were
employed to investigate the morphology of active layers. As
shown in Figure 4, PM6:7c and PM6:8c blend films show
The work was supported by grants from the National Natural
Science Foundation of China (Nos. 21562031, 51863012,
51833004, and 51425304) and from the Natural Science
Foundation of Jiangxi Province in China (Nos.
20171ACB21012 and 2018ACB21022)
REFERENCES
■
(
1) (a) Zhang, G.; Zhao, J.; Chow, P. C. Y.; Jiang, K.; Zhang, J.; Zhu,
Z.; Zhang, J.; Huang, F.; Yan, H. Chem. Rev. 2018, 118, 3447−3507.
b) Collins, S. D.; Ran, N. A.; Heiber, M. C.; Nguyen, T.-Q. Adv.
(
Energy Mater. 2017, 7, 1602242. (c) Liu, F.; Zhou, Z.; Zhang, C.;
Vergote, T.; Fan, H.; Liu, F.; Zhu, X. J. Am. Chem. Soc. 2016, 138,
1
5523−15526. (d) Li, S.; Liu, W.; Shi, M.; Mai, J.; Lau, T.-K.; Wan,
J.; Lu, X.; Li, C.-Z.; Chen, H. Energy Environ. Sci. 2016, 9, 604−610.
2) (a) Cai, C.; Wan, J.; Zhang, Y.; Yuan, Z.; Huang, Q.; Xu, G.; Hu,
Y.; Zhao, X.; Chen, Y. J. Polym. Sci., Part A: Polym. Chem. 2018, 56,
(
Figure 4. (a−d) AFM height and (e−h) phase images (scale bar: 1.0
μm) of optimum blend films.
1
16−124. (b) Yuan, Z.; Li, J.; Xiao, Y.; Li, Z.; Qian, X. J. Org. Chem.
2
010, 75, 3007−3016. (c) Kan, B.; Feng, H.; Wan, X.; Liu, F.; Ke, X.;
Wang, Y.; Wang, Y.; Zhang, H.; Li, C.; Hou, J.; Chen, Y. J. Am. Chem.
Soc. 2017, 139, 4929−4934.
small root-mean-square (RMS) roughness of 1.61 and 1.77
nm, indicating their good compatibility with the donor, which
appropriate domain sizes in nanoscale phase separation. Proper
phase separation and domain size were beneficial for exciton
separation and charge transport, which contributes to the high
Jsc, FF, and PCE.
(
3) (a) Lin, K.; Xie, B.; Wang, Z.; Xie, R.; Huang, Y.; Duan, C.;
Huang, F.; Cao, Y. Org. Electron. 2018, 52, 42−50. (b) Anthony, J. E.;
Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X. Adv. Mater. 2010,
22, 3876−3892.
(4) (a) Fei, Z.; Eisner, F. D.; Jiao, X.; Azzouzi, M.; Rohr, J. A.; Han,
Y.; Shahid, M.; Chesman, A. S. R.; Easton, C. D.; McNeill, C. R.;
Anthopoulos, T. D.; Nelson, J.; Heeney, M. Adv. Mater. 2018, 30,
1
705209. (b) Zhang, H.; Yao, H.; Hou, J.; Zhu, J.; Zhang, J.; Li, W.;
Yu, R.; Gao, B.; Zhang, S.; Hou, J. Adv. Mater. 2018, 30, 1800613.
5) (a) Lu, Z.; Jiang, B.; Zhang, X.; Tang, A.; Chen, L.; Zhan, C.;
In summary, introduction of imide groups to SubPc was
proved to be an effective strategy to construct organic
semiconductors. SubPcTI with LUMO energy levels ca.
(
Yao, J. Chem. Mater. 2014, 26, 2907−2914. (b) Wang, J.; Wang, W.;
Wang, X.; Wu, Y.; Zhang, Q.; Yan, C.; Ma, W.; You, W.; Zhan, X. Adv.
Mater. 2017, 29, 1702125.
−3.95 eV, adjustable solubility, and strong visible absorption
is an excellent chromophore for electron acceptors. Different
substituents at imide sites or B atoms showed significant
influence on the solubility, mobility, and photovoltaic perform-
ance of these acceptors. More functional derivatives deriving
from this interesting chromophore deserve intensive inves-
tigation, to improve their promising applications in organic
solar cells.
(6) Chen, W.; Zhang, Q. J. Mater. Chem. C 2017, 5, 1275−1302.
(7) (a) Jin, F.; Chu, B.; Li, W.; Su, Z.; Yan, X.; Wang, J.; Li, R.;
Zhao, B.; Zhang, T.; Gao, Y.; Lee, C. S.; Wu, H.; Hou, F.; Lin, T.;
Song, Q. Org. Electron. 2014, 15, 3756−3760. (b) Claessens, C. G.;
Gonzalez-Rodriguez, D.; Rodriguez-Morgade, M. S.; Medina, A.;
Torres, T. Chem. Rev. 2014, 114, 2192−2277. (c) Beaumont, N.;
Castrucci, J. S.; Sullivan, P.; Morse, G. E.; Paton, A. S.; Lu, Z.-H.;
Bender, T. P.; Jones, T. S. J. Phys. Chem. C 2014, 118, 14813−14823.
(8) (a) Lin, C.-F.; Nichols, V. M.; Cheng, Y.-C.; Bardeen, C. J.; Wei,
ASSOCIATED CONTENT
M.-K.; Liu, S.-W.; Lee, C.-C.; Su, W.-C.; Chiu, T.-L.; Han, H.-C.;
Chen, L.-C.; Chen, C.-T.; Lee, J.-H. Sol. Energy Mater. Sol. Cells 2014,
■
*
S
Supporting Information
1
22, 264−270. (b) Mutolo, K. L.; Mayo, E. I.; Rand, B. P.; Forrest, S.
R.; Thompson, M. E. J. Am. Chem. Soc. 2006, 128, 8108−8109.
9) Beaumont, N.; Cho, S. W.; Sullivan, P.; Newby, D.; Smith, K. E.;
Jones, T. S. Adv. Funct. Mater. 2012, 22, 561−566.
10) Cnops, K.; Rand, B. P.; Cheyns, D.; Verreet, B.; Empl, M. A.;
Heremans, P. Nat. Commun. 2014, 5, 3406.
11) Sullivan, P.; Duraud, A.; Hancox, l.; Beaumont, N.; Mirri, G.;
(
(
Synthesis and characterization, UV−vis and fluorescence
absorption spectra, DFT calculations, cyclic voltamme-
images, and NMR spectra (PDF)
(
Tucker, J. H. R.; Hatton, R. A.; Shipman, M.; Jones, T. S. Adv. Energy
Mater. 2011, 1, 352−355.
D
Org. Lett. XXXX, XXX, XXX−XXX