Beilstein J. Org. Chem. 2010, 6, No. 44.
References
2 with Cu2+. During the interaction process no other changes
were observed. This finding thus indicates that the adenine
moiety in both 1 and 2 acts as a metal ion binding site for which
participation of anthracene in cation-π interaction is facilitated
upon binding of metal ions, especially Cu2+ ion.
1. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnalaugsson, T. A.;
Huxley, T. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E.
2. Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.;
Jeftinija, S.; Lin, V. S.-Y. J. Am. Chem. Soc. 2003, 125, 4451.
3. Czarnik, A. W. Acc. Chem. Res. 1994, 27, 302.
4. Quang, D. T.; Kim, J. S. Chem. Rev. 2007, 107, 3780.
5. Muthaup, G.; Schlicksupp, A.; Hess, L.; Beher, D.; Ruppert, T.;
Masters, C. L.; Beyreuther, K. Science 1996, 271, 1406.
6. Løvstad, R. A. BioMetals 2004, 17, 111.
7. Barceloux, D. G.; Barceloux, D. J. Clin. Toxicol. 1999, 37, 217.
8. Sarkar, B. In Metal ions in biological systems; Siegel, H.; Siegel, A.,
Eds.; Marcel Dekker: New York, 1981; Vol. 12, pp 233 ff.
9. Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108, 1517.
Figure 11: Absorption spectra of anthracene (c = 2.39 × 10−5 M) upon
gradual addition of Cu2+ ion (c = 1.20 × 10−3 M) in CH3CN containing
0.1% DMSO.
10.Jung, H. S.; Park, M.; Han, D. Y.; Kim, E.; Lee, C.; Ham, S.; Kim, J. S.
11.Nisar Ahamed, B.; Ravikumar, I.; Ghosh, P. New J. Chem. 2009, 33,
Conclusion
12.Zheng, Y.; Gattas-Asfura, K. M.; Konka, V.; Leblanc, R. M.
13.Kim, H. J.; Hong, J.; Hong, A.; Ham, S.; Lee, J. H.; Kim, J. S. Org. Lett.
In conclusion, the above studies have led to the development of
adenine–linked fluorescent probes 1 and 2, which selectively
respond to copper ions. The chemosensors display fluorescent
changes upon complexation with Cu2+ ions. The emission of 1
is greatly decreased in the presence of Cu2+ compared to 2 and
thus underlines the fact that the sensing ability for metal ions of
adenine motif is appreciable and effective when the fluorescent
probe resides in close proximity to the WC/HG site. We believe
that these observations regarding the interaction between the
adenine moiety and Cu2+ ions should serve as the basis for new
strategies to design new chemosensors based on adenine even
although copper ion recognition by other systems has been
described. Further progress along this direction is underway in
our laboratory.
14.Jung, H. S.; Kwon, P. S.; Lee, J. W.; Kim, J. L.; Hong, C. S.; Kim, J. W.;
Yan, S.; Lee, J. Y.; Lee, J. H.; Joo, T.; Kim, J. S. J. Am. Chem. Soc.
15.Weng, Y.-Q.; Yue, F.; Zhong, Y.-R.; Ye, B.-H. Inorg. Chem. 2007, 48,
16.Martinez, R.; Zapata, F.; Caballero, A.; Espinosa, A.; Tarraga, A.;
17.Xiang, Y.; Tong, A.; Jin, P.; Ju, Y. Org. Lett. 2006, 8, 2863.
18.Zheng, Y.; Gattás-Asfura, K. M.; Konka, V.; Leblance, R. M.
19.Kim, S. H.; Kim, J. S.; Park, S. M.; Chang, S.-K. Org. Lett. 2006, 8,
20.Qi, X.; Jun, E. J.; Xu, L.; Kim, S.-J.; Hong, J. S. J.; Yoon, Y. J.; Yoon, J.
21.Jung, H. S.; Park, M.; Han, D. Y.; Kim, E.; Lee, C.; Ham, S.; Kim, J. S.
22.Ravikumar, I.; Nisar Ahamed, B. N.; Ghosh, P. Tetrahedron 2007, 63,
Supporting Information
Supporting Information File 1
Stoichiometry curves for 1 and 2 with Cu2+ ions.
23.Kumar, S.; Singh, P.; Kaur, S. Tetrahedron 2007, 63, 11724.
24.Yang, J.-S.; Lin, C.-S.; Hwang, C. Org. Lett. 2001, 3, 889.
25.Tan, Z.-J.; Chen, S.-J. Biophys. J. 2006, 90, 1175.
Acknowledgements
26.Liu, L.; Zhang, G.; Xiang, J.; Zhang, D.; Zhu, D. Org. Lett. 2008, 10,
We thank CSIR, Government of India for financial support. TS
thanks CSIR, Government of India for providing fellowship.
We also thank DST, Government of India for providing facil-
ities in the department under FIST program.
And references cited therein.
27.Mishra, A. K.; Purohit, C. S.; Verma, S. CrystEngComm 2008, 10,
Page 7 of 8
(page number not for citation purposes)