Angewandte Chemie International Edition
10.1002/anie.202015130
RESEARCH ARTICLE
In summary, we have shown the selective growth of isomeric
covalent organic lattices to create specific topologies by designing
monomer isomers and tuning reaction conditions. Systematic and
comparative studies on three monomer isomers with tetraphenyl
H. Lin, S.-L. Wang, S. J. L. Billinge, K.-L. Lu, Y. J. Chabal, X. Zou, H.-C.
Zhou, Nat. Chem., 2020, 12, 90–97.
[
9]
a) S. Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548-568; b) Y. Jin,
Y. Hu, W. Zhang, Nat. Rev. Chem. 2017, 1, 0056; c) Z. Xie, Y. Li, L. Chen,
D. Jiang, Acta Polym. Sin., 2016, 12, 1621–1634. d) Q. Yang, D. Liu, C.
Zhong, J.-R. Li, Chem. Rev. 2013, 113, 8261−8323. e) J. Á. Martín-Illán,
D. Rodríguez-San-Miguel, C. Franco, I. Imaz, D. Maspoch, J. Puigmartí-
Luis, F. Zamora, Chem. Commun., 2020, 56, 6704–6707.
benzene core and A
different 2D TetPB-COF isomers in
2
B
2
bifunctionality reveal the production of five
pre-designable yet
a
synthetically controllable manner. Interestingly, TetPB-COFs with
different topologies (kgm and sql), pore shapes and sizes were
selectively synthesized from the same A B monomers (either p-
2 2
[10] a) K. Geng, T. He, R. Liu, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D.
Jiang, Chem. Rev. 2020, 120, 8814–8933. b) N. Huang, L. Zhai, D. E.
Coupry, M. A. Addicoat, K. Okushita, K. Nishimura, T. Heine, D. Jiang,
Nat. Commun. 2016, 7, 12325.
TetPB or m-TetPB) by changing reaction solvents. In contrast, sql
o-TetPB-COF was the sole product of o-TetPB owing to its
restricted configuration. Notably, the long-range ordered kagome
and rhombic lattices of these isomeric frameworks are clearly
visualized by HRTEM images. With their different pore shape and
size, the selective adsorption of vitamin B12 become possible,
which suggest a great potential of targeted adsorption or
[
11] a) P. F. Wei, M. Z. Qi, Z. P. Wang, S. Y. Ding, W. Yu, Q. Liu, L. K. Wang,
H. Z. Wang, W. K. An, W. Wang, J. Am. Chem. Soc. 2018, 140, 4623-
4631; b) X. Wang, L. Chen, S. Y. Chong, M. A. Little, Y. Wu, W. H. Zhu,
R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick, A. I. Cooper, Nat.
Chem. 2018, 10, 1180-1189.
[12] a) D. Bessinger, L. Ascherl, F. Auras, T. Bein, J. Am. Chem. Soc. 2017,
139, 12035-12042; b) H. Ding, J. Li, G. Xie, G. Lin, R. Chen, Z. Peng, C.
Yang, B. Wang, J. Sun, C. Wang, Nat. Commun. 2018, 9, 5234.
separation. This strategy casts
conventional co-condensation [C
a
+ C
sharp contrast to the
] approach which cannot
4
4
[
13] a) Q. Fang, J. Wang, S. Gu, R. B. Kaspar, Z. Zhuang, J. Zheng, H. Guo,
S. Qiu, Y. Yan, J. Am. Chem. Soc. 2015, 137, 8352-8355; b) L. Bai, S. Z.
F. Phua, W. Q. Lim, A. Jana, Z. Luo, H. P. Tham, L. Zhao, Q. Gao, Y.
Zhao, Chem. Commun. 2016, 52, 4128−4131; c) G. Zhang, X. Li, Q. Liao,
Y. Liu, K. Xi, W. Huang, X. Jia, Nat. Commun. 2018, 9, 2785.
form any framework polymorphisms. We highlight that the
monomer isomerism is directly transformed into the framework,
thus greatly expanding the approaches and scope of the
polymorphism of COFs. Considering together with the fact of a
broad diversity of monomer isomers, we envision that this
approach opens a way to a library of COF polymorphism with
different compositions and unprecedented structures.
[14] a) S. Wang, Q. Wang, P. Shao, Y. Han, X. Gao, L. Ma, S. Yuan, X. Ma,
J. Zhou, X. Feng, B. Wang, J. Am. Chem. Soc. 2017, 139, 4258-4261; b)
X. Chen, Y. Li, L. Wang, Y. Xu, A. Nie, Q. Li, F. Wu, W. Sun, X. Zhang,
R. Vajtai, P. M. Ajayan, L. Chen, Y. Wang, Adv. Mater. 2019, 31,
1901640.
[
15] a) X. Liu, D. Huang, C. Lai, G. Zeng, L. Qin, H. Wang, H. Yi, B. Li, S. Liu,
Acknowledgements
M. Zhang, R, Deng, Y. Fu, L. Li, W. Xue, S. Chen, Chem. Soc. Rev. 2019,
48, 5266−5302; b) Z. Li, N. Huang, K. H. Lee, Y. Feng, S. Tao, Q. Jiang,
This work was financially supported by the National Key Research
and Development Program of China (2017YFA0207500),
National Natural Science Foundation of China (51973153,
Y. Nagao, S. Irle, D. Jiang, J. Am. Chem. Soc. 2018, 140, 12374-12377;
c) H. Yuan, N. Li, J. Linghu, J. Dong, Y. Wang, A. Karmakar, J. Yuan, M.
Li, P. J. S. Buenconsejo, G. Liu, H. Cai, S. J. Pennycook, N. Singh, D.
Zhao, ACS Sens. 2020, 5, 1474–1481.
21975049, 21875140), and the Natural Science Foundation of
[
16] a) T. Ma, J. Li, J. Niu, L. Zhang, A. S. Etman, C. Lin, D. Shi, P. Chen, L.-
H. Li, X. Du, J. Sun, W. Wang, J. Am. Chem. Soc. 2018, 140, 6763-6766;
b) R.-R. Liang, F.-Z. Cui, R.-H. A, Q.-Y. Qi, X. Zhao, CCS Chem. 2020,
2, 139–145; c) Y.-P. Mo, X.-H. Liu, D. Wang, ACS Nano 2017, 11,
Tianjin (17JCJQJC44600)
Conflict of interest
11694−11700.
[
[
17] F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klꢅck, M. O’Keeffe, O. M.
Yaghi, J. Am. Chem. Soc. 2009, 131, 4570−4571.
The authors declares no conflict of interest.
18] a) T.-Y. Zhou, S.-Q. Xu, Q. Wen, Z.-F. Pang, X. Zhao, J. Am. Chem. Soc.
2014, 136, 15885−15888; b) Z.-F. Pang, T.-Y. Zhou, R.-R. Liang, Q.-Y.
Qi, X. Zhao, Chem. Sci., 2017, 8, 3866–3870; c) F. Auras, L. Ascherl, A.
H. Hakimioun, J. T. Margraf, F. C. Hanusch, S. Reuter, D. Bessinger, M.
Doblinger, C. Hettstedt, K. Karaghiosoff, J. Am. Chem. Soc. 2016, 138,
Keywords: covalent organic frameworks, isomers, controllable
growth, selective adsorption.
[
[
1]
2]
a) S. Datta, M. L. Saha, P. J. Stang, Acc. Chem. Res. 2018, 51, 2047-
063; b) O. N. Kavanagh, D. M. Croker, G. M. Walker, M. J. Zaworotko,
16703−16710.
2
[
[
19] a) A. P. Cꢆtꢇ, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O.
M. Yaghi, Science 2005, 310, 1166−1170; b) P. Kuhn, M. Antonietti, A.
Thomas, Angew. Chem. Int. Ed. 2008, 47, 3450−3453; Angew. Chem.
Drug. Discov. Today. 2019, 24, 796-804.
a) Z.-J. Guan, F. Hu, J.-J. Li, Z.-R. Wen, Y.-M. Lin, Q.-M. Wang, J. Am.
Chem. Soc. 2020, 142, 2995-3001. b) S. Tian, Y. Z. Li, M. B. Li, J. Yuan,
J. Yang, Z. Wu, R. Jin, Nat. Commun. 2015, 6, 8667.
2
008, 120, 3499–3502
20] a) Y. Li, W. Chen, G. Xing, D. Jiang, L. Chen, Chem. Soc. Rev., 2020, 49,
852-2868; b) Y. Li, Q. Chen, T.; Xu, Z. Xie, J. Liu, X. Yu, S. Ma, T. Qin,
[
[
[
[
3]
4]
K. Jie, Y. Zhou, E. Li, F. Huang, Acc. Chem. Res. 2018, 51, 2064-2072.
T. D. Bennett, A. K. Cheetham, Acc. Chem. Res. 2014, 47, 1555−1562.
2
L. Chen, J. Am. Chem. Soc. 2019, 141, 13822−13828; c) W. Hao, D.
Chen, Y. Li, Z. Yang, G. Xing, J. Li, L. Chen, Chem. Mater. 2019, 31,
5] J. Ma, L. D. Tran, A. J. Matzger, Cryst. Growth Des. 2016, 16, 4148−4153.
6]
J. Pang, S. Yuan, J. Qin, C. Liu, C. Lollar, M. Wu, D. Yuan, H.-C. Zhou,
M. Hong, J. Am. Chem. Soc. 2017, 139, 16939-16945.
8100−8105; d) X. Yan, H. Liu, Y. Li, W. Chen, T. Zhang, Z. Zhao, G. Xing,
L. Chen, Macromolecules 2019, 52, 7977−7983; e) D. Chen, W. Chen,
G. Xing, T. Zhang, L. Chen, Chem. Eur. J. 2020, 26, 8377–8381; f) B.
Zhang, X. Song, Y. Li, Y. Li, Z. Peng, L. Ye, L. Chen, 2 Chem. Commun
[
[
7]
F. Igoa, S. Martínez, K. P. S. Zanoni, J. Castiglioni, L. Suescun, J.
González-Platas, A. S. S. D. Camargo, C. Kremera, J. Torres,
CrystEngComm, 2018, 20, 4942-4953.
2020, 56, 3253-3256.
8] a) B. Karadeniz, D. ꢀiliꢁ, I. Huskiꢁ, L. S. Germann, A. M. Fidelli, S. Muratoviꢁ,
I. Lonꢂariꢁ, M. Etter, R. E. Dinnebier, D. Bariꢃiꢁ, N. Cindro, T. Islamoglu,
O. K. Farha, T. Friꢃꢂiꢁ, K. Uꢄareviꢁ, J. Am. Chem. Soc. 2019, 141,
[
[
21] G. Das, T. Skorjanc, S. K. Sharma, F. Gándara, M. Lusi, D. S. S. Rao, S.
Vimala, S. K. Prasad, J. Raya, D. S. Han, R. Jagannathan, J.-C. Olsen,
A. Trabolsi, J. Am. Chem. Soc. 2017, 139, 9558−9565.
19214-19220; b) S.-H. Lo, L. Feng, K. Tan, Z. Huang, S. Yuan, K.-Y.
22] D. C. Hodgkin, J. Kamper, M. Mackay, J. Pickworth, K. N. Trueblood, J.
G. White, Nature 1956, 178, 64–66.
Wang, B.-H. Li, W.-L. Day, G. S. Liu, S.; Yang, C.-C. Tao, T.-T. Luo, C.-
This article is protected by copyright. All rights reserved.