Paper
Journal of Materials Chemistry B
drug release, DOX–Fe
3
O
4
@mSiO
2
@R–S–S–R
1
-2 incubated with 11 L. Yuan, Q. Tang, D. Yang, J. Z. Zhang, F. Zhang and J. Hu, J.
a non-cancerous cell line (HUVEC) is presented as the control.
As illustrated in Fig. 9, it shows a very low cytotoxic effect (about 12 X. F. Guo, Y. S. Kim and G. J. Kim, J. Phys. Chem. C, 2009, 113,
8.40%) on the HUVEC even when the concentration of the cells 8313–8319.
reaches 50 mg mL due to the lack of GSH to enhance DOX 13 M. Manzano and M. Vallet-Regi, J. Mater. Chem., 2010, 20,
Phys. Chem. C, 2011, 115, 9926–9932.
2
ꢁ
1
release.
5593–5604.
1
1
4 Y. J. Wang and F. Caruso, Chem. Mater., 2005, 17, 953–961.
5 B. S. Chang, D. Chen, Y. Wang, Y. Z. Chen, Y. F. Jiao,
X. Y. Sha and W. L. Yang, Chem. Mater., 2013, 25, 574–585.
Conclusion
In summary, we have demonstrated an enzyme-responsive 16 M. W. Ambrogio, C. R. Thomas, Y.-L. Zhao, J. I. Zink and
controlled-release system using a smart switch (R–S–S–R ) gated J. F. Stoddart, Acc. Chem. Res., 2011, 44, 903–913.
core–shell Fe O @mSiO nanomaterial for targeted drug 17 S. Angelos, N. M. Khashab and Y.-W. Yang, J. Am. Chem. Soc.,
1
3
4
2
delivery. Owing to the degradation of the “gate,” the cargo
release is triggered by GSH, which is a specic enzyme that has 18 B. S. Chang, X. Y. Sha, J. Guo, Y. F. Jiao, C. C. Wang and
been proved to be highly expressed at the tumor microenvi- W. L. Yang, J. Mater. Chem., 2011, 21, 9239–9247.
ronment. The in vitro efficacy of the nanocomposites were 19 E. Aznar, M. D. Marcos, R. Martinez-Manez, F. Sancenon,
2009, 131, 12912–12914.
conrmed using HeLa cells and a MTT assay and CLSM were
carried out, revealing that the nanocarrier can rapidly enter into
J. Soto, P. Amoros and C. Guillem, J. Am. Chem. Soc., 2009,
131, 6833–6843.
the cells and has no obvious cytotoxic effect on HeLa cells at a 20 Y. Zhu, W. Meng, H. Gao and N. Hanagata, J. Phys. Chem. C,
ꢁ1
concentration of 50 mg mL . Furthermore, the drug molecules
can be transported into cells just aer 6 h incubation with 21 H. Li, L. L. Tan, P. Jia, Q. L. Li, Y. L. Sun, J. Zhang, Y. Q. Ning,
HeLa. Considering the high specicity and good controlled- J. H. Yu and Y. W. Yang, Chem. Sci., 2014, 5, 2804–2808.
release performance, DOX–Fe @mSiO @R–S–S–R can be 22 F. Muhammad, M. Y. Guo, W. X. Qi, F. X. Sun, A. F. Wang,
potential candidate for targeted cancer
2011, 115, 13630–13636.
3
O
4
2
1
employed as
treatment.
a
Y. J. Guo and G. S. Zhu, J. Am. Chem. Soc., 2011, 133, 8778–8781.
23 I. Ojima, Acc. Chem. Res., 2008, 41, 108–119.
2
4 I. Ojima, X. D. Geng, X. Y. Wu, C. X. Qu, C. P. Borella,
H. S. Xie, S. D. Wilhelm, B. A. Leece, L. M. Bartle,
V. S. Goldmacher and R. V. J. Chari, J. Med. Chem., 2002,
45, 5620–5623.
Acknowledgements
Financial support for this study was provided by the National
Natural Science Foundation of China (21471041, 21171045, 25 N. S. Kosower and E. M. Kosower, Int. Rev. Cytol., 1978, 54,
1101046, 21441002), the Natural Science Foundation of Hei- 109–160.
longjiang Province of China ZD201214, and the Technology 26 S. J. Yu, C. L. He, J. X. Ding, Y. L. Cheng, W. T. Song,
2
development pre-project of Harbin Normal University (12XYG-
1).
X. L. Zhuang and X. S. Chen, So Matter, 2013, 9, 2637–2645.
27 J. A. Cook, H. I. Pass, S. N. Iype, N. Friedman, W. Degraff,
A. Russo and J. B. Mitchell, Cancer Res., 1991, 51, 4287–4294.
1
2
8 S. L. Blair, P. Heerdt, S. Sacher, A. Abolhoda, S. Hochwald,
H. Cheng and M. Burt, Cancer Res., 1997, 57, 152–155.
References
1
2
3
F. S. Du, Y. Wang, R. Zhang and Z. C. Li, So Matter, 2010, 6, 29 R. Weissleder, A. Bogdanov, E. A. Neuwelt and M. Papisov,
35–848. Adv. Drug Delivery Rev., 1995, 16, 321–334.
J. Wu, Y. J. Zhu, F. Chen, X. Y. Zhao, J. Zhao and C. Qi, Dalton 30 J. Su, M. Cao, L. Ren and C. Hu, J. Phys. Chem. C, 2011, 115,
Trans., 2013, 42, 7032–7040. 14469–14477.
X. Q. An, F. Zhan and Y. Y. Zhu, Langmuir, 2013, 29, 1061– 31 X. Li, X. Huang, D. Liu, X. Wang, S. Song, L. Zhou and
068.
H. Zhang, J. Phys. Chem. C, 2011, 115, 21567–21573.
T. Levis and V. Ganesan, So Matter, 2012, 8, 11817–11830. 32 E. Taboada, E. Rodr ´ı guez, A. Roig, J. Or ´o , A. Roch and
A. Shimoda, S. I. Sawada, A. Kano, A. Maruyama, A. Moquin, R. N. Muller, Langmuir, 2007, 23, 4583–4588.
F. M. Winnik and K. Akiyoshi, Colloids Surf., B, 2012, 99, 38– 33 E. Ruiz-Hern ´a ndez, A. L ´o pez-Noriega, D. Arcos, I. Izquierdo-
8
1
4
5
4
4.
Barba, O. Terasaki and M. Vallet-Reg ´ı , Chem. Mater., 2007,
19, 3455–3463.
34 J. Zhou, W. Wu, D. Caruntu, M. H. Yu, A. Martin, J. F. Chen,
C. J. O'Connor and W. L. Zhou, J. Phys. Chem. C, 2007, 111,
17473–17477.
6
7
8
9
H. Kim, S. Kim, C. Park, H. Lee, H. J. Park and C. Kim, Adv.
Mater., 2010, 22, 4280–4283.
Y. N. Zhao, B. G. Trewyn, I. I. Slowing and V. S.-Y. Lin, J. Am.
Chem. Soc., 2009, 131, 8398–8400.
B. G. Trewyn, I. I. Slowing, S. Giri, H. T. Chen and V. S. Y. Lin, 35 Y. Zhu, T. Ikoma, N. Hanagata and S. Kaskel, Small, 2010, 6,
Acc. Chem. Res., 2007, 40, 846–853. 471–478.
J. Lu, M. Liong, Z. X. Li, J. I. Zink and F. Tamanoi, Small, 36 M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel,
010, 6, 1794–1805. F. Tamanoi and J. I. Zink, ACS Nano, 2008, 2, 889–896.
0 H. Yamada, C. Urata, Y. Aoyama, S. Osada, Y. Yamauchi and 37 P. P. Yang, S. L. Gai and J. Lin, Chem. Soc. Rev., 2012, 41,
K. Kuroda, Chem. Mater., 2012, 24, 1462–1471. 3679–3698.
2
1
This journal is © The Royal Society of Chemistry 2015
J. Mater. Chem. B