A R T I C L E S
Kano et al.
Scheme 1
Scheme 3
Scheme 2
Table 1. Effect of Amine in the Ligand Coupling of 1a with 2aa
entry
amine
yield (%)b
dl-3a:meso-3ac
reagents (Kumada-Tamao coupling)4a with metal catalysts has
been shown to be very useful for obtaining various biaryls.10
Among the most outstanding examples to date are the use of
Hayashi’s chiral Ni catalysts10a,b and the method recently
reported by Buchwald.10c However, the use of sterically con-
gested substrates has frequently resulted in a significant decrease
in yield, and thus these methods have shown limited scope. This
is an inherent disadvantage, since axially chiral compounds are
required to have steric bulk proximal to the chiral axis, around
which conformational rotation is highly restricted. Uemura
reported that Suzuki coupling using planar chiral arene chro-
mium complexes gave relatively bulky biaryls in good yields
with high diastereoselectivity.10e,f
1
2
3
4
5
6
i-PrNH2
(i-Pr)2NH
(i-Pr)2Et
Et3N
DABCO
quinuclidine
75(7)
0(31)
0(10)
0(11)
78
>99:<1
-
-
-
>99:<1
>99:<1
95
a The reaction was performed using 1a (1.0 equiv), aryllead compound
2a (3.0 equiv) and amine (3.0 equiv) at rt for 2 h. Refer to Scheme 3. For
experimental details, see Supporting Information. b Yields are of isolated,
purified 3a, and those in parentheses are of mono-coupling product 4a.
c The ratio of diastereomers of 3a.
have wide-ranging applications. Despite the obvious usefulness
of these methods, there is still a need for enantioselective cross-
coupling using an external source of chirality, such as asym-
metric catalysts.
Entirely different approaches have also been used to create
optically active biaryl frameworks. The kinetic resolution of
racemates with enzymes,11 desymmetrization,12 and the asym-
metric ring-opening of achiral lactones6a,c have been shown to
Barton reported that the ligand coupling of phenols with
arylleads is a powerful tool for synthesizing sterically hindered
products under mild conditions.13 The reaction using arylleads
as an equivalent of aryl cation was originally devised by Pinhey,
who demonstrated that the use of excess pyridine accelerated
the reaction rate (Scheme 1).14
(8) (a) Tomioka, K.; Ishiguro, T.; Iitaka, Y.; Koga, K. Tetrahedron 1984, 40,
1303. (b) Feldman, K. S.; Smith, R. S. J. Org. Chem. 1996, 61, 2606. (c)
Arisawa, M.; Utsumi, S.; Nakajima, M.; Ramesh, N. G.; Tohma, H.; Kita,
Y. Chem. Commun. 1999, 469. (d) Feringa, B.; Wynberg, H. J. Org. Chem.
1981, 46, 2547. (e) Brussee, J.; Jansen, A. C. A. Tetrahedron Lett. 1983,
24, 3261. (f) Yamamoto, K.; Fukushima, H.; Nakazaki, M. Chem. Commun.
1984, 1490. (g) Osa, T.; Kashiwagi, Y.; Yanagisawa, Y.; Bobbitt, M. Chem.
Commun. 1994, 2535. (h) Smrcˇina, M.; Pol´ıvkova´, J.; Vyskocˇil, Sˇ.;
Kocˇovsky, P. J. Org. Chem. 1993, 58, 4534. (i) Nakajima, M.; Miyoshi,
I.; Kanayama, K.; Hashimoto, S.; Noji, M.; Koga, K. J. Org. Chem. 1999,
64, 2264. (j) Irie, R.; Masutani, K.; Katsuki, T. Synlett 2000, 1433. (k)
Smrcˇina, M.; Vyskocˇil, Sˇ.; Pol´ıvkova´, J.; Pola´kova´, J.; Kocˇovsky, P. Collect.
Czech. Chem. Commun. 1996, 61, 1520. (l) Vyskocˇil, Sˇ.; Smrcˇina, M.;
Lorenc, M.; Hanusˇ, V.; Pola´sek, M.; Kocˇovsky, P. Chem. Commun. 1998,
585. (m) Barrett, A. G. M.; Itoh, T.; Wallace, E. M. Tetrahedron Lett.
1993, 34, 2233. For recent review, see: (n) Elliott, G. I.; Konopelski, J. P.
Tetrahedron 2001, 57 5683.
In marked contrast, anilines and anilides do not undergo either
C- or N-arylation with aryllead triacetates.15 Barton16 and
others17 later reported that Cu(OAc)2-catalyzed N-arylation of
anilines using aryllead triacetates, which gave various N,N-
diarylamines but did not lead to C-arylation (Scheme 2). On
the basis of these findings, we report here that the asymmetric
aryl-aryl coupling reaction with aryllead triacetate proceeded
(9) (a) Reuman, M.; Meyers, A. I. Tetrahedron 1985, 41, 837. (b) Gant, T.
G.; Meyers, A. I. Tetrahedron 1994, 50, 2297. (c) Meyers, A. I.; Lutomski,
K. A. J. Am. Chem. Soc. 1982, 104, 879. (d) Meyers, A. I.; Himmelsbach,
R. J. J. Am. Chem. Soc. 1985, 107, 682. (e) Wilson, J. M.; Cram, D. J. J.
Am. Chem. Soc. 1982, 104, 881. (f) Hattori, T.; Hotta, H.; Suzuki, T.;
Miyano, S. Bull. Chem. Soc. Jpn. 1993, 66, 613. (g) Hattori, T.; Koike,
N.; Miyano, S. J. Chem. Soc., Perkin Trans. 1 1994, 2273. (h) Baker, R.
W.; Pocock, G. R.; Sargent, M. V. Chem. Commun. 1993, 1489. (i) Baker,
R. W.; Pocock, G. R.; Sargent, M. V.; Twiss, E. Tetrahedron: Asymmetry
1993, 4, 2423. (j) Shindo, M.; Koga, K.; Tomioka, K. J. Am. Chem. Soc.
1992, 114, 8732.
(10) (a) Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. J. Am. Chem. Soc. 1988,
110, 8153. (b) Hayashi, T.; Hayashizaki, K.; Ito, Y. Tetrahedron Lett. 1989,
30, 215. (c) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 12051.
(d) Cammidge, A. N.; Cre´py, V. L. Chem. Commun. 2000, 1723. (e)
Uemura, M.; Kamikawa, K. Synlett 2000, 938. (f) Kamikawa, K.; Watanabe,
T.; Uemura, M. J. Org. Chem. 1996, 61, 1375. (g) Nelson, S. G.; Hilfiker,
M. A. Org. Lett. 1999, 1, 1379.
(11) (a) Miyano, S.; Kawahara, K.; Inoue, Y.; Hashimoto, H. Chem. Lett. 1987,
355. (b) Tamai, Y.; Nakano, T.; Koike, S.; Kawahara, K.; Miyano, S. Chem.
Lett. 1989, 1135.
(12) (a) Matsumoto, T.; Konegawa, T.; Nakamura, T.; Suzuki, K. Synlett 2002,
122. (b) Hayashi, T.; Niizuma, S.; Kamikawa, T.; Suzuki, N.; Uozumi, Y.
J. Am. Chem. Soc. 1995, 117, 9101.
(13) Barton, D. H. R.; Donnelly, D. M. X.; Guiry, P. J.; Finet, J.-P. J. Chem.
Soc., Perkin Trans. 1 1994, 2921.
(14) (a) Bell, H. C.; Pinhey, J. T.; Sternhell, S. Aust. J. Chem. 1979, 32, 1551.
(b) Pinhey, J. T. Aust. J. Chem. 1991, 44, 1353. (c) Pinhey, J. T. Pure
Appl. Chem. 1996, 68, 819. (d) Pinhey, J. T. In ComprehensiVe Organo-
metallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.;
Pergamon: Oxford, 1995; Vol. 11, p 461.
(15) (a) Barton, D. H. R.; Yadav-Bhanagar, N.; Finet, J.-P.; Khamsi, J.
Tetrahedron Lett. 1987, 28, 3111.
(16) Barton, D. H. R.; Donnelly, D. M. X.; Finet, J.-P.; Guiry, P. J. J. Chem.
Soc., Perkin Trans. 1 1991, 2095.
9
5366 J. AM. CHEM. SOC. VOL. 124, NO. 19, 2002