pubs.acs.org/joc
wavelengths, allowing precise and quantitative analysis and
3
imaging even in complicated systems. A variety of signaling
A Ratiometric Fluorescent Chemodosimeter with
Selective Recognition for Sulfite in Aqueous Solution
4
mechanisms such as intramolecular charge transfer (ICT),
5
metal-ligand charge transfer (MLCT), excimer/exciplex
formation, and fluorescence resonance energy transfer
Yimin Sun, Cheng Zhong, Rui Gong, Honglei Mu, and
Enqin Fu*
6
7
FRET) can be employed for the design of ratiometric
(
Department of Chemistry, Hubei Key Laboratory on Organic
and Polymeric Optoelectronic Materials, Wuhan University,
Wuhan 430072, P. R. China
measurement. Among them, FRET is a mechanism that is
commonly used for ratiometric signaling for analytes due to
its potential practical benefits in cell physiology, optical
therapy, as well as selective and sensitive sensing toward
8
target molecular or ionic species. Many efforts have been
made to design FRET-based ratiometric fluorescence for
Received July 9, 2009
9
cations in recent years, but the ratiometric fluorescent
1
0
chemosensor for anion is still rare, especially for those
11
anions with deleterious effects on the environment in
aqueous solution.
Among the various anionic analytes, sulfite is of consider-
able interest due to the significant amount of sulfur dioxide
released in industrial process and its deleterious effects on the
1
2
environment. The traditional method of sulfite sensing is
1
3
ion-selective electrodes. In the past, some guanidinium-
based ion-selective electrodes for sulfite have been re-
1
4
ported, and the response behavior indicates the existence
of a selective interaction between the guanidinium moiety
1
5
and the sulfite anion.
In this paper, we present a new FRET-based ratiometric
fluorescent chemodosimeter 1 for sulfite, in which guanidi-
1
niocarbonyl pyrrole moiety is covalently attached to
6
A fluorescent chemodosimeter containing a guanidinio-
carbonylpyrrole and a 9-(aminomethyl)anthracene moi-
ety has been synthesized. The sensor exhibits ratiometric
(
5) (a) Peng, X.; Xu, Y.; Sun, S.; Wu, Y.; Fan, J. Org. Biomol. Chem. 2007,
, 226. (b) Jang, Y. J.; Jun, E. J.; Lee, Y. J.; Kim, Y. S.; Kim, J. S.; Yoon, J. J.
Org. Chem. 2005, 70, 9603.
6) (a) Yang, R.-H.; Chan, W.-H.; Lee, A. W. M.; Xia, P.-F.; Zhang, H.-
5
2
-
fluorescence changes for SO3 over other anions in 90%
water/DMSO. The interesting ratiometric fluorescent
(
K.; Li, K. J. Am. Chem. Soc. 2003, 125, 2884. (b) Wegner, S. V.; Okesli, A.;
Chen, P.; He, C. J. Am. Chem. Soc. 2007, 129, 3474. (c) Bencini, A.; Bianchi,
A.; Lodeiro, C.; Masotti, A.; Parola, A. J.; Pina, F.; de Melo, J. S.; Valtancoli,
B. Chem. Commun. 2000, 1639.
2
-
changes for SO3
are attributed to the fluorescence
-
2
resonance energy transfer (FRET) and the SO3 com-
plex induced photochemical reaction.
(
7) (a) Albers, A. E.; Okreglak, V. S.; Chang, C. J. J. Am. Chem. Soc.
006, 128, 9640. (b) Li, Y.; Zheng, H.; Li, Y.; Wang, S.; Wu, Z.; Liu, P.; Gao,
Z.; Liu, H.; Zhu, D. J. Org. Chem. 2007, 72, 2878.
8) Othman, A. B.; Lee, J. W.; Wu, J.-S.; Kim, J. S.; Abidi, R.; Thu ꢀe ry, P.;
Strub, J. M.; Dorsselaer, A. V.; Vicens, J. J. Org. Chem. 2007, 72, 7634.
(9) (a) S ꢀa nchez-Martı
n, R. M.; Cuttle, M.; Mittoo, S.; Bradley, M.
2
(
The development of fluorescent chemosensors for anions
has received considerable attention due to the simplicity and
´
Angew. Chem., Int. Ed. 2006, 45, 5472. (b) Yuan, M.; Li, Y.; Li, J.; Li, C.;
Liu, X.; Lv, J.; Xu, J.; Liu, H.; Wang, S.; Zhu, D. Org. Lett. 2007, 9, 2313. (c)
Lu, C.; Xu, Z.; Cui, J.; Zhang, R.; Qian, X. J. Org. Chem. 2007, 72, 3554.
(10) (a) Schazmann, B.; Alhashimy, N.; Diamond, D. J. Am. Chem. Soc.
1
sensitivity of fluorescence. However, the conventional
fluorescence methodology, which monitors the fluorescence
intensity at a single wavelength, is easily interfered by sensor
concentration, photobleaching, optical path length, and
2
006, 128, 8607. (b) Peng, X.; Wu, Y.; Fan, J.; Tian, M.; Han, K. J. Org.
Chem. 2005, 70, 10524. (c) Joo, T. Y.; Singh, N.; Lee, G. W.; Jang, D. O.
Tetrahedron. Lett. 2007, 48, 8846. (d) Wen, Z.-C.; Jiang, Y.-B. Tetrahedron
2004, 60, 11109.
2
illumination intensity. To eliminate those effects, a ratio-
metric fluorescent measurement is desirable. This technique
uses the ratio of the fluorescent intensities at two different
(
11) Chen, C.-L.; Chen, Y.-H.; Chen, C.-Y.; Sun, S.-S. Org. Lett. 2006, 8,
053.
(12) (a) Mohr, G. J. Chem. Commun. 2002, 2646. (b) Mana, H.; Spohn, U.
5
Anal. Chem. 2001, 73, 3187. (c) Zhao, M.; Hibbert, D. B.; Gooding, J. J. Anal.
Chim. Acta 2006, 556, 195. (d) Cassella, I. G.; Marchese, R. Anal. Chim. Acta
1995, 311, 199.
(13) (a) Raoof, J. B.; Ojani, R.; Karimi-Maleh, H. Int. J. Electrochem. Sci.
2007, 2, 257. (b) Ordeig, O.; Banks, C. E.; del Campo, F. J.; Xavier Mu nꢁ oz,
F.; Davis, J.; Compton, R. G. Electroanalysis 2006, 18, 247.
(
1) (a) Gunnlaugsson, T.; Lee, T. C.; Parkesh, R. Org. Lett. 2003, 5, 4065.
b) Kwon, J. Y.; Singh, N. J.; Kim, H. N.; Kim, S. K.; Kim, K. S.; Yoon, J. J.
Am. Chem. Soc. 2004, 126, 8892.
2) (a) Kim, S.; Pudavar, H. E.; Prasad, P. N. Chem. Commun. 2006, 2071.
b) Henary, M. M.; Wu, Y.; Fahrni, C. J. Chem.;Eur. J. 2004, 10, 3015.
3) Maruyama, S.; Kikuchi, K.; Hirano, T.; Urano, Y.; Nagano, T. J. Am.
Chem. Soc. 2002, 124, 10650.
4) (a) Baruah, M.; Qin, W.; Vall ꢀe e, R. A. L.; Beljonne, D.; Rohand, T.;
(
(
(
(14) Mowery, M. D.; Hutchins, R. S.; Molina, P.; Alajarı
Bachas, L. G. Anal. Chem. 1999, 71, 201. (b) Hutchins, R. S.; Molina, P.;
Alajarın, M.; Vidal, A.; Bachas, L. G. Anal. Chem. 1994, 66, 3188.
(15) Badr, I. H. A.; Plata, A.; Molina, P.; Alajarın, M.; Vidal, A.; Bachas,
L. G. Anal. Chim. Acta 1999, 388, 63.
´
n, M.; Vidal, A.;
(
´
(
´
Dehaen, W.; Boens, N. Org. Lett. 2005, 7, 4377. (b) Xu, Z.; Xiao, Y.; Qian,
X.; Cui, J.; Cui, D. Org. Lett. 2005, 7, 889. (c) Mei, Y.; Bentley, P. A. Bioorg.
Med. Chem. Lett. 2006, 16, 3131. (d) Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu,
Y.; Zhao, J.; Sun, S.; Xu, T. J. Am. Chem. Soc. 2007, 129, 1500.
(16) (a) Schmuck, C. Chem. Commun. 1999, 843. (b) Schmuck, C.; Lex, J.
Org. Lett. 1999, 1, 1779. (c) Schmuck, C.; Bickert, V. Org. Lett. 2003, 5, 4579.
(d) Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc. 2005, 127, 3373.
DOI: 10.1021/jo9014744
r 2009 American Chemical Society
Published on Web 09/22/2009
J. Org. Chem. 2009, 74, 7943–7946 7943