(
monitored by a built-in infrared sensor). The internal pressure
2006, 245, 200; (f) G. R. A. Adair, K. K. Kapoor, A. L. B. Scolan and
J. M. J. Willaims, Tetrahedron Lett., 2006, 47, 8943; (g) G. Erdogan
and D. B. Grotjahn, J. Am. Chem. Soc., 2009, 131, 10354; (h) A.
Scarso, M. Colladon, P. Sgarbossa, C. Santo, R. A. Michelin and G.
Strukul, Organometallics, 2010, 29, 1487.
1 For heterogeneous catalytic systems see, for example: (a) V. K.
Srivastava, H. C. Bajaj and R. V. Jasra, Catal. Commun., 2003, 4,
during the reaction ranged between 15 and 25 psi. After the
time indicated (5 or 15 min), the vial was cooled and yield and
selectivity were determined by GC analyses.
1
Isomerization of estragole into anethole under preparative
conditions (conventional heating)
5
2
43; (b) D. Kishore and S. Kannan, J. Mol. Catal. A: Chem., 2006,
44, 83; (c) C. M. Jinesh, C. A. Antonyraj and S. Kannan, Catal.
Today, 2009, 141, 176; (d) S. K. Sharma, P. A. Parikh and R. V.
Jasra, J. Mol. Catal. A: Chem., 2010, 317, 27.
12 For selective synthesis of trans-anethole see references 10a, e and h.
13 B. Lastra-Barreira, J. D ´ı ez and P. Crochet, Green Chem., 2009, 11,
1681.
4 For other arene-ruthenium complexes able to promote C=C migra-
tion see: (a) H. Brunner, T. Zwack and M. Zabel, Organometallics,
2003, 22, 1741; (b) V. Cadierno, P. Crochet, S. E. Garc ´ı a-Garrido and
J. Gimeno, Dalton Trans., 2004, 3635; (c) Y. Takai, R. Kitaura, E.
Nakatani, T. Onishi and H. Kurosawa, Organometallics, 2005, 24,
Under a nitrogen atmosphere, the precursor 1a (0.081 g,
0
.2 mmol, 1 mol%), 5 mL of distilled MeOH and 3.1 mL of
estragole (20 mmol) were introduced into a teflon-cap sealed
◦
tube and heated at 80 C for 20 min. After this time, GC
1
analysis revealed a complete conversion and a trans-selectivity
of 99%. After removal of the solvent under vacuum, flash
chromatography of the residue using ethyl acetate as eluent
afforded 2.6 g (17.5 mmol, 88%) of analytically pure trans-
anethole.
4
729; (d) P. Crochet, J. D ´ı ez, M. A. Fern a´ ndez-Z u´ mel and J. Gimeno,
´
Adv. Synth. Catal., 2006, 348, 93; (e) A. E. D ´ı az-Alvarez, P. Crochet,
M. Zablocka, C. Duhayon, V. Cadierno, J. Gimeno and J. P. Majoral,
Adv. Synth. Catal., 2006, 348, 1671; (f) P. Crochet, M. A. Fern a´ ndez-
Z u´ mel, J. Gimeno and M. Scheele, Organometallics, 2006, 25, 4846;
Acknowledgements
(
g) V. Cadierno, P. Crochet and J. Gimeno, Synlett, 2008, 1105; (h) M.
This work was supported by Spanish “Ministerio de Educaci o´ n
y Ciencia” (Projects CTQ2006-084885/BQU and CSD2007-
Fekete and F. Jo o´ , Catal. Commun., 2006, 7, 783; (i) V. Cadierno, J.
Francos, J. Gimeno and N. Nebra, Chem. Commun., 2007, 2536; (j) V.
Cadierno, P. Crochet, J. Francos, S. E. Garc ´ı a-Garrido, J. Gimeno
and N. Nebra, Green Chem., 2009, 11, 1992.
5 The low catalytic activity of derivatives 1d and 1e is probably due
their possible deactivation through orthometalation of the aromatic
0
0006 (Consolider Ingenio 2010 program)) and FICYT of
Asturias (Project IB08-036). B.L.-B. thanks FICYT of Asturias
for the award of a Ph.D grant (PCTI-Severo Ochoa program).
1
1
3 3
rings of PPh or P(OPh) (see reference 13).
6 The higher catalytic activities obtained in alcoholic medium are
probably due to the easier ruthenium-chloride bond dissociation
Notes and references
31
1
which constitutes the first step of the process. Accordingly, P{ H}
NMR spectra of 1a–c, recorded at room temperature in methanol,
ethanol or isopropanol, show two signals corresponding to deriva-
1
The IUPAC name of anethole is 1-methoxy-4-(1-propen-1-
yl)benzene.
6
6
2
(a) A. Y. Leung, Encyclopedia of Common Natural Ingredients Used
tives [RuCl
OCH
2
(h -C
6
H
5
OCH
2
CH
2
OH){P(OR)
3
}] and [RuCl(S)(h -
in Food, Drug and Cosmetics, John Wiley & Sons, New York, 1980;
C
6
H
5
2
CH
2
OH){P(OR)
3
}][Cl] (S = solvent molecule). The rel-
6
(
b) P. R. Ashurst, Food Flavorings, Springer, 3rd Edn, 1999.
ative proportion of [RuCl(S)(h -C
which results of the Ru–Cl bond cleavage, increases with the solvent
6
H
5
OCH
2
CH
2
OH){P(OR) }][Cl],
3
3
4
See, for example: G. H. Eirew, U.S. Pat. Appl., US 2009035229, 2009.
See, for example: (a) K.-I. Fujita, T. Fujita and I. Kubo, Phytother.
Res., 2007, 21, 47; (b) E. Enan, PCT Int. Appl., 2008003007, 2008;
polarity (i.e. in the order isopropanol < ethanol < methanol).
17 Catalysts 1d and 1e have also been tested under these conditions
and improved performances are observed, nevertheless the activity
and the selectivity are still unsatisfactory (reaction times ≥2 h, trans-
selectivity ≤91%).
(
c) V. V. Kouznetsov and D. R. Merchan Arenas, Tetrahedron Lett.,
009, 50, 1546 and references cited therein.
2
5
6
A. J. Chalk, in Flavors and Fragances: A world Perspective, ed.
B. M. Lawrence, B. D. Mookherjee and B. J. Willis, Elsevier Science,
Amsterdam, 1988.
See, for example: (a) S. Cabiddu, A. Maccioni and M. Secci,
Ann. Chim., 1962, 52, 1261; (b) A. D. Buss, R. Mason and S.
Warren, Tetrahedron Lett., 1983, 24, 5293; (c) G. Cahiez and H.
Avedissian, Tetrahedron Lett., 1998, 39, 6159; (d) J. A. Miller and
J. W. Dankwardt, Tetrahedron Lett., 2003, 44, 1907; (e) J. C. Roberts
and J. A. Pincock, J. Org. Chem., 2006, 71, 1480.
18 (a) C. O. Kappe, Angew. Chem., Int. Ed., 2004, 43, 6250; (b) B. A.
Roberts and C. R. Strauss, Acc. Chem. Res., 2005, 38, 653; (c) D.
Dallinger and C. O. Kappe, Chem. Rev., 2007, 107, 2563; (d) V.
Polshettiwar and R. S. Varma, Chem. Soc. Rev., 2008, 37, 1546; (e) V.
Polshettiwar and R. S. Varma, Acc. Chem. Res., 2008, 41, 629; (f) S.
Caddick and R. Fitzmaurice, Tetrahedron, 2009, 65, 3325.
19 (a) Microwave-Assisted Organic Synthesis, ed. P. Lidstr o¨ m and
J. P. Tierney, Black Publishing: Oxford, 2005; (b) Microwave in
Organic Synthesis, 2nd ed., ed. A. Loupy, Wiley-VCH: Weinheim,
2006; (c) Microwave methods in Organic Synthesis, ed. M. Larhed and
K. Olofsson, Springer: Berlin, 2006; (d) Aqueous Microwave Assisted
Chemistry, ed. V. Polshettiwar and R. S. Varma, RSC Publishing:
Cambridge, 2010.
7
8
(a) A. P. Wagner, Manuf. Chemist, 1952, 23, 56; (b) H. Pines,
and W. M. Stalick, Base-Catalyzed Reactions of Hydrocarbons and
Related Compounds, Academic Press Inc., New York, 1977.
(a) F. Caujolle and D. Meynier, Acad. Sci., 1958, 246, 1465; (b) J. M.
Taylor, P. M. Jenner and W. I. Jones, Toxicol. Appl. Pharmacol., 1964,
6
2
, 378; (c) J. R. Boissier, P. Simon and B. Le Bourhis, Therapie, 1967,
2, 309.
20 After 15 min under conventional heating the following yields and
selectivity were obtained: 28%, trans : cis = 87 : 13 (1a); 66%, trans :
cis = 95 : 5 (1b); 70%, trans : cis = 91 : 9 (1c); 1%, trans : cis ratio not
determined (1d); 21%, trans : cis = 79 : 21 (1e).
9
See specifications given by the Joint FAO/WHO Expert
Committee on Food Additives (JECFA) available online at:
http://www.fao.org/ag/agn/jecfa-flav.
0 For homogeneous catalytic systems see, for example: (a) I. R.
Baxendale, A.-L. Lee and S. V. Ley, Synlett, 2002, 516; (b) M.
Arisawa, Y. Terada, M. Nakagawa and A. Nishida, Angew. Chem.,
Int. Ed., 2002, 41, 4732; (c) S. K. Sharma, V. K. Srivastava, P. H.
Pandya and R. V. Jasra, Catal. Commun., 2005, 6, 205; (d) H. S.
Lee and G. Y. Lee, Bull. Korean Chem. Soc., 2005, 26, 461; (e) S. K.
Sharma, V. K. Srivastava and R. V. Jasra, J. Mol. Catal. A: Chem.,
21 Note that although ethanol and methanol are not typical “green”
solvents due to their flammability and toxicity (in the case of MeOH),
they represent a better alternative than other organic solvents since
they can be produced from biomass. See, for example: (a) K. Alfonsi,
J. Colberg, P. J. Dunn, T. Fevig, S. Jennings, T. A. Johson, H. P.
Kleine, C. Knight, M. A. Nagy, D. A. Perry and M. Stefaniak, Green
Chem., 2008, 10, 31; (b) F. M. Kerton, in Alternative Solvents for
Green Chemistry, RSC Publishing: Cambridge, 2009.
1
1
314 | Green Chem., 2010, 12, 1311–1314
This journal is © The Royal Society of Chemistry 2010