Metal Complexation in Polymer Gels
J. Phys. Chem. B, Vol. 105, No. 23, 2001 5373
degree of ionization. In the case of acrylic acid gels, as shown
in Figure 2, the dimer species is relatively more abundant in
AAc(H) compared to that in gels AAc(H/Na) and AAc(Na).
Cu(II) in AAc(Na) is present mostly as a monomeric species.
Thus, as hydrophobicity decreases, the tendency to form dimeric
species also decreases. In the case of hydrophobic A4ABA gels,
the dimeric Cu(II) species was observed in the un-ionized as
well as in the partially ionized gels. Further, in the case of more
hydrophobic A6ACA gels the dimeric Cu(II) species was found
even in the completely ionized forms. These observations clearly
suggest that an “optimum hydrophobicity” (i.e., a balance of
hydrophilic and hydrophobic interactions) of the polymeric gel
is required to form dimeric species with Cu(II) ions. The data
in Table 1 show that swelling does not determine the structure
of the Cu(II) complexes. For example, both the acid as well as
the salt forms of the Cu(II)-complexed A6ACA gels showed
dimers irrespective of their swelling behavior. Moreover, we
have also observed that A6ACA gels of two different cross-
link densities, viz., 10% and 30%, showed identical EPR spectra
consistent with identical structures of Cu(II) complexes, although
their swelling capacities in water were 230 and 60 g/g,
respectively. Thus, we conclude that the structure of the complex
is not determined by the cross-link density but is certainly influ-
enced by the hydrophobic-hydrophilic balance of the polymer.
Acknowledgment. S.V. acknowledges the Council of Sci-
entific and Industrial Research, New Delhi, for the Senior
Research Fellowship.
References and Notes
(1) Tanaka, T.; Wang, C.; Pande, V.; Grosberg, A. Yu.; English, A.;
Masamune, S.; Gold, H.; Levy, R.; King, K. Faraday Discuss. 1996, 102,
201.
(2) Rivas, B. L.; Maturana, H A.; Molina. M. J.; Gomej-Anton, M.
R.; Rosa, M.; Pierola, I. F. J. Appl. Polym. Sci. 1998, 67, 1109.
(3) Tiera, M. J.; De Oliveira, V. A.; Burrows, H. D.; Da Graca Miguel,
M.; Neumann, M. G. Colloid Polym. Sci. 1998, 276, 206.
(4) Thompson, J. A.; Jarvinen, G. Filter. Sep. 1999, 36, 28.
(
5) Siyam, T.; Ashour, A. H.; Youssef, H. A. Polym. Int. 1999, 48,
799.
(
6) Bekturov, E. A.; Mammutbekov, G. K. Macromol. Chem. Phys.
1
997, 198, 81.
(
(
(
7) Jose, L.; Pillai, V. N. R. Macromol. Chem. Phys. 1996, 197, 2089.
8) Naoki, T. Shokubai 1998, 40, 536.
9) Yakura, N.; Kashiwada, T.; Hirai, H. Kobunshi Ronbunshu 1998,
55, 415.
(10) Bergbreiter, D. E.; Case, B. L.; Liu Y.-S.; Caraway, J. W.
Macromolecues 1998, 31, 6053.
11) Case, B. L.; Franchina, J G.; Liu, Y.-S.; Bergbreiter, D. E. Chem.
Ind. 1998, 75, 403.
(
(12) Bergbreiter, D. E. Catal. Today 1998, 42, 389.
(13) Starodoubtsev, S. G.; Khokhlov, A. R.; Sokolov, E. L.; Cho, B.
Macromolecules 1995, 28, 3930.
Conclusions
(14) Lee, W. F.; Hsu, C.-H. J. Appl. Polym. Sci. 1998, 69, 229.
(15) Liu, X.; Tong, Z.; Hu, O. Macromolecules 1995, 28, 3813.
We have investigated the effect of alkyl chain length on metal
complexation using a series of homopolymer gels having
different alkyl chain lengths varying from zero to seven. The
nature of the Cu(II) complexes and the number of COOH groups
involved in complexation were strongly dependent on alkyl
chain length or hydrophobicity of the gel. The EPR analysis
showed two types of complexes, dimeric and monomeric. The
present work gives an insight into the role of the hydrophobic-
hydrophilic balance on the molecular structure of the Cu(II)
complexed polyacids. It is known that encapsulation of copper
(
16) Budtova, T. V.; Belnikevich, N. G.; Suleimenov, I. E.; Frenkel, S.
Ya. Polymer 1993, 34, 5154.
(17) Budtova, T. V.; Navard, P. Macromolecules 1998, 31, 8845.
(
18) Varghese, S.; Lele, A. K.; Srinivas, D.; Mashelkar, R. A. J. Phys.
Chem. B 1999, 103, 9530.
19) Lehto, J.; Vaaramaa, K.; Vesterinen, E.; Tenhu, H. J. Appl. Polym.
(
Sci. 1998, 68, 355.
(20) Sasaki, S.; Yataki, K.; Maeda, H. Langmuir 1998, 14, 796.
(21) Kruczala, K.; Schlick, S. J. Phys. Chem. B 1999, 103, 1934.
(22) El-Sonbati, A. Z.; El-Binadary, A. A.; Diab, M. A.; El-Ela, M. A.;
Mazrouh, S. A. Polymer 1994, 35, 647.
(23) Schlick, S.; Alonso-Amigo, M. G.; Eaton, S. S. J. Phys. Chem.
27
acetate in zeolite cavities enhances the catalytic activity. Here
we present another innovative way of encapsulating metal
complexes within the polymer matrix. In principle, by this
method one should be able to design new catalysts for enhanced
catalytic activities. These gels could also find applications in
water purification, wherein the ability of the gels to form
complexes with the divalent metal ions, such as Pb(II), could
be used effectively.
1
989, 93, 7906.
(24) Solomon, E. I.; Tuczek, F.; Root, D. E.; Brown, C. A. Chem. ReV.
1994, 94, 827.
(25) Badiger, M. V.; Lele, A. K.; Bhalerao, V. S.; Varghese, S.;
Mashelkar, R. A. J. Chem. Phys. 1998, 109, 1175.
(
26) Varghese, S.; Lele, A. K.; Mashelkar, R. A. J. Chem. Phys. 2000,
12, 3063.
27) Chavan, S.; Srinivas, D.; Ratnasamy, P. Top. Catal. 2000, 11/12,
359.
1
(