Please do not adjust margins
Green Chemistry
Page 5 of 7
DOI: 10.1039/C5GC02924D
Journal Name
COMMUNICATION
Acknowledgment
We gratefully thank the financial support from National
Natural Science Foundation of China (21325624) and the
Fundamental Research Funds for the Central Universities
(buctrc201528).
Notes and references
1. (a) P. P. Upare, D. W. Hwang, Y. K. Hwang, U. ꢀH. Lee, D. ꢀY.
Hong and J. ꢀS. Chang, Green Chem., 2015, 17, 3310; (b) X. ꢀY.
Li, R. Shang, M. ꢀC. Fu and Y. Fu, Green Chem., 2015, 17, 2790.
2. (a) A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107,
2411; (b) B. M. Nagaraja, A. H. Padmasri, B. D. Raju and K.
S. R. Rao, J. Mol. Catal., A, 2007, 265, 90.
Fig. 5 Proposed simplified dehydrogenationꢀhydrogenation coupling process
for production of GBL and FOL on Cu/CaAlO catalysts.
3. G. Seo and H. Chon, J. Catal., 1987, 67, 424.
As a result, a mechanism for dehydrogenationꢀhydrogenation
coupling process through hydrogen transfer over asꢀformed
Cu/CaAlO catalysts is proposed tentatively (Fig.5). Firstly, the
hydroxyl group in 1,4ꢀBDO interacts with SLB sites on the
surface of CaAlO matrix. Subsequently, a hydrogen atom is
abstracted to form a negatively charged alkoxide intermediate,
which can further bond to adjacent defective Cu NPs to form
another adsorbed alkoxide intermediate. Then, Cu NPs capture
another αꢀhydrogen atom from alcoholic group to produce GBL
product. Finally, hydrogenation of FL is triggered on Cu NPs
using the attracted hydrogen produced from 1,4ꢀBDO and
promoted by Cu+ species, driving the reaction equilibrium
toward the production of GBL. As a result, extremely high and
effective hydrogen transfer activity of Cuꢀ4 catalyst can be
4. (a) P. D. Vaidya and V. V. Mahajani, Ind. Eng. Chem. Res.,
2003, 42, 3881; (b) J. Kijenski, P. Winiarek, T. Paryjczak, A.
Lewicki and A. Mikołajska, Appl. Catal. A., 2002, 233, 171;
(c) S. Sitthisa, T. Sooknoi, Y. Ma, P. B. Balbuena, D. E.
Resasco, J. Catal., 2011, 277, 1; (d) S. Sitthisa and D. E.
Resasco, Catal. Lett., 2011, 141, 784.
5. (a) Y. Nakagawa, Y. Shinmi, S. Koso and K. Tomishige. J.
Catal., 2010, 272, 191; (b) Y. Amada, Y. Shinmi, S. Koso, T.
Kubota and Y. Nakagawa. Appl. Catal., B, 2011, 105, 117.
6. (a) B. M. Nagaraja, V. S. Kumar, V. Shasikala, A. H.
Padmasri, B. Sreedhar, B. D. Raju and K. S. R. Rao, Catal.
Commun., 2003, 4, 287; (b) X. Chen, H. Li, H. Luo and M.
Qiao, Appl. Catal. A., 2002, 233, 13; (c) R. S. Rao, R. T.
Baker and M. A. Vannice, Catal. Lett., 1999, 60, 51; (d) R.
Rao, A. Dandekar, R. T. K. Baker and M. A Vannice, J.
Catal., 1997, 171, 406; (e) B. M. Nagaraja, A. H. Padmasri,
P. Seetharamulu, K. H. P. Reddy, B. D. Raju and K. S. R.
Rao, J. Mol. Catal. A., 2007, 278, 29.
7. (a) P. Panagiotopoulou, N. Martin and D. G. Vlachos, J. Mol.
Catal., A, 2014, 392, 223; (b) P. Panagiotopoulou, D. G.
Vlachos, Appl. Catal., A, 2014, 480, 17; (c) D. Scholz, C.
reasonably attributed to
a cooperative nanoenvironment
composed of surface SLB sites, defective Cu NPs and Cu+
species, which efficiently hold the dehydrogenation of hydroxyl
group in 1,4 BDO and the hydrogenation of carbonyl group in
FL through hydrogen transfer.
Aellig and I. Hermans, Chemsuschem, 2014,
Gilkey, P. Panagiotopoulou, A. V. Mironenko, G. R. Jenness,
D. G. Vlachos and B. Xu, ACS Catal., 2015, , 3988.
8. Y. L. Zhu, H. W. Xiang, Y. W. Li, H. Jiao, J. S. Wu, B.
Zhong and G. Q. Guo, New J. Chem., 2003, 27, 208.
7, 268; (d) M. J.
Conclusions
5
In summary, we reported the fabrication of CaAlOꢀsupported
copper catalysts with strong base sites via a twoꢀstep procedure
based on CaAlꢀLDH precursor route. The resulting catalyst exhibited
superior catalytic performance for gasꢀphase solventꢀfree coupling
between dehydrogenation and hydrogenation without external
hydrogen supply or recycle to simultaneously produce GBL and
FOL. The HRTEM, PAS, XPS, CO2ꢀTPD, in situ IR of butanol
adsorption confirmed the existence of defective Cu NPs, abundant
SLB sites and Cu+ species on the catalyst surface, which created
9. (a) A. C. Albertsson, I. K. Varma, Biomacromolecules, 2003,
4
, 1466; (b) H. Lee, F. Zeng, M. Dunne and C. Allen,
Biomacromolecules, 2005, , 3119.
6
10. H. E. Bellis and W. Del, US Pat., 5110954, 1992.
11. D.W. Hwang, P. Kashinathan, J. M. Lee, J. H. Leea, U. H.
Lee, J. S. Hwang and Y. K. Hwang, Green Chem., 2011, 13
1672.
12. (a) N. Ichikawa, S. Sato, R. Takahashi, T. Sodesawa and K.
Inui, J. Mol. Catal. A., 2004, 212, 197; (b) H. Inoue, S. Sato,
R. Takahashi, Y. Izawa, H. Ohno and K.Takahashi, Appl.
Catal., A, 2009, 352, 66.
13. (a) H. J. Mercker, F.ꢀF. Pape, J. Simon, A. Henne, M. Hesse,
U. Koehler, R. Dostalek, C.F. Erdbruegger and D. Kratz,
US Pat., 6093677, 2000; (b) B. Zhang, Y. Zhu, G. Ding, H.
Zheng and Y. Li, Appl. Catal., A, 2012, 443–444, 191.
14. (a) O. Robin and S. Jun, US Pat., 7858350, 2010; (b) H.
Yim, R. Haselbeck, W. Niu, C. PujolꢀBaxley, A. Burgard, J.
Boldt, J. Khandurina, J. D. Trawick, R. E. Osterhout, R.
Stephen, J. Estadilla, S. Teisan, H. B. Schreyer, S. Andrae,
a
cooperative nanoenvironment for the highly efficient
dehydrogenation of hydroxyl group in 1,4 BDO and
hydrogenation of carbonyl group in FL. More importantly, a
good stability with a lasting 100 h for the high yields of GBL
and FOL (>95.0%) could be attained. Our present strategy can
hold significant promise for new bifunctional baseꢀmetal
heterogeneous catalyst toward highly efficient gasꢀphase
dehydrogenationꢀhydrogenation coupling process, which may be
an ecoꢀfriendly and economical alternative to the already
established processes to manufacture GBL and FOL.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins