10.1002/anie.201913811
Angewandte Chemie International Edition
RESEARCH ARTICLE
[7]
(a) X. Jing, C. He, L. Zhao, C. Duan, Acc. Chem. Res. 2019, 52, 100-
109; (b) K. Lu, T. Aung, N. Guo, R. Weichselbaum, W. Lin, Adv. Mater.
2018, 30, 1707634; (c) G. Maurin, C. Serre, A. Cooper, G. Férey, Chem.
Soc. Rev. 2017, 46, 3104-3107; (d) H. Wang, X. Dong, V. Colombo, Q.
Wang, Y. Liu, W. Liu, X.-L. Wang, X.-Y. Huang, D. M. Proserpio, A.
Sironi, Y. Han, J. Li, Adv. Mater. 2018, 30, 1805088; (e) B. Liu, H.
Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 2008, 130, 5390-5391;
(f) L. Jiao, Y. Wang, H.-L. Jiang, Q. Xu, Adv. Mater. 2018, 30, 1703663;
(g) S. J. Yang, S. Nam, T. Kim, J. H. Im, H. Jung, J. H. Kang, S. Wi, B.
Park, C. R. Park, J. Am. Chem. Soc. 2013, 135, 7394-7397; (h) Z. Bao,
G. Chang, H. Xing, R. Krishna, Q. Ren, B. Chen, Energy Environ. Sci.
2016, 9, 3612-3641; (i) B. Y. Guan, X. Y. Yu, H. B. Wu, X. W. Lou, Adv.
Mater. 2017, 29, 1703614; (j) Y.-Z. Chen, R. Zhang, L. Jiao, H.-L. Jiang,
Coord. Chem. Rev. 2018, 362, 1-23; (k) Q.-G. Zhai, X. Bu, X. Zhao, D.-
S. Li, P. Feng, Acc. Chem. Res. 2017, 50, 407-417; (l) X. Lian, Y. Fang,
E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H.-C. Zhou,
Chem. Soc. Rev. 2017, 46, 3386-3401.
Conclusion
In summary, we successfully regulated the particle sizes, phase
compositions and nanostructures of the encapsulated Cu/Cu2O
nanojunctions in organic frameworks derived from Cu-MOFs by
tuning the ligand structures and pyrolytic conditions. Promotion
of the polymerization degree of decarboxylated organic moieties
was achieved by introducing exocyclic acrylate groups in organic
linkers of Cu-MOFs. The highly polymerized porous organic
matrices could efficiently prevent the agglomeration of in situ
generated NPs under annealing conditions, which formed stable
Cu/CuOx nanojunctions with abundant accessible interfaces
inside porous organic matrices. The facilely prepared
Cu/Cu2O@organic framework composite material ZJU-199-350
exhibits superior catalytic activity, selectivity and stability in
hydrogenation of FAL into FOL. This work provides a unique
perspective for the generation of accessible metal/metal oxide
nanojunctions inside organic frameworks derived from MOFs for
highly efficient heterogeneous catalysis.
[8]
(a) W. Bak, H. S. Kim, H. Chun, W. C. Yoo, Chem. Commun. 2015, 51,
7238-7241; (b) K. Zhao, Y. Liu, X. Quan, S. Chen, H. Yu, ACS Appl.
Mater. Interfaces 2017, 9, 5302-5311; (c) X. Liu, D. Xu, L. Zhang, ACS
Sustainable Chem. Eng. 2017, 5, 7800-7811; (d) Y. Wang, Y. Lü, W.
Zhan, Z. Xie, Q. Kuang, L. Zheng, J. Mater. Chem. A 2015, 3, 12796-
12803; (e) H. Niu, S. Liu, Y. Cai, F. Wu, X. Zhao, Microporous
Mesoporous Mater. 2016, 219, 48-53; (f) A. K. Kar, R. Srivastava, Inorg.
Chem. Front. 2019, 6, 576-589; (g) K. Yang, Y. Yan, H. Wang, Z. Sun,
W. Chen, H. Kang, Y. Han, W. Zhang, X. Sun, Z. Li, Nanoscale 2018,
10, 17647-17655.
Acknowledgements
We are grateful for the financial support of the National Natural
Science Foundation of China (grant nos. 21525312 and
21872122).
[9]
E. Scott, F. Peter, J. Sanders, Appl. Microbiol. Biotechnol. 2007, 75,
751-762.
[10] K. Chen, C.-D. Wu, Angew. Chem. Int. Ed. 2019, 58, 8119-8123.
[11] (a) L. Zhang, C. Zou, M. Zhao, K. Jiang, R. Lin, Y. He, C.-D. Wu, Y. Cui,
B. Chen, G. Qian, Cryst. Growth Des. 2016, 16, 7194-7197; (b) S. S.-Y.
Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams,
Science 1999, 283, 1148-1150.
Keywords: Metal-organic frameworks • Organic framework
materials • Composite materials • Heterojunctions • Catalysis
[12] (a) R. Dabestani, P. F. Britt, A. C. Buchanan, Energy Fuels 2005, 19,
365-373; (b) N. M. Sánchez, A. de Klerk, Thermochim. Acta 2018, 662,
23-40.
[1]
[2]
[3]
(a) H.-L. Liu, F. Nosheen, X. Wang, Chem. Soc. Rev. 2015, 44, 3056-
3078; (b) J. Wang, G. Dong, Chem. Rev. 2019, 119, 7478-7528; (c) D.
Pflӓsterer, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 1331-1367.
(a) D. Wang, D. Astruc, Chem. Soc. Rev. 2017, 46, 816-854; (b) P.
Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann,
Chem. Rev. 2019, 119, 2192-2452.
[13] G.-Q. Kong, Z.-D. Han, Y. He, S. Ou, W. Zhou, T. Yildirim, R. Krishna,
C. Zou, B. Chen, C.-D. Wu, Chem. Eur. J. 2013, 19, 14886-14894.
[14] H. Gu, C. Ma, C. Liang, X. Meng, J. Gu, Z. Guo, J. Mater. Chem. C
2017, 5, 4275-4285.
(a) C. Ray, T. Pal, J. Mater. Chem. A 2017, 5, 9465-9487; (b) B. Zhang,
J. Liu, J. Wang, Y. Ruan, X. Ji, K. Xu, C. Chen, H. Wan, L. Miao, J.
Jiang, Nano Energy 2017, 37, 74-80; (c) H. Robatjazi, H. Zhao, D. F.
Swearer, N. J. Hogan, L. Zhou, A. Alabastri, M. J. McClain, P.
Nordlander, N. J. Halas, Nat. Commun. 2017, 8, 27; (d) R. Boppella, C.
H. Choi, J. Moon, D. H. Kim, Appl. Catal. B: Environ. 2018, 239, 178-
186.
[15] (a) R. V. Law, D. C. Sherrington, C. E. Snape, Macromolecules 1996,
29, 6284-6293; (b) I. van Zandvoort, E. J. Koers, M. Weingarth, P. C. A.
Bruijnincx, M. Baldus, B. M. Weckhuysen, Green Chem. 2015, 17,
4383-4392.
[16] H. Furukawa, Y. B. Go, N. Ko, Y. K. Park, F. J. Uribe-Romo, J. Kim, M.
O’Keeffe, O. M. Yaghi, Inorg. Chem. 2011, 50, 9147-9152.
[17] J. P. Espinós, J. Morales, A. Barranco, A. Caballero, J. P. Holgado, A.
R. González-Elipe, J. Phys. Chem. B 2002, 106, 6921-6929.
[18] H. Wang, J. Male, Y. Wang, ACS Catal. 2013, 3, 1047-1070.
[19] (a) L. T. Mika, E. Cséfalvay, Á. Németh, Chem. Rev. 2018, 118, 505-
613; (b) W. Leitner, J. Klankermayer, S. Pischinger, H. Pitsch, K.
Kohse-Höinghaus, Angew. Chem. Int. Ed. 2017, 56, 5412-5452.
[20] K. Yan, G. Wu, T. Lafleur, C. Jarvis, Renew. Sustain. Energy Rev. 2014,
38, 663-676.
[4]
(a) M. B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R.
Silva, X. Zou, R. Zboril, R. S. Varma, Chem. Rev. 2016, 116, 3722-
3811; (b) N. K. Ojha, G. V. Zyryanov, A. Majee, V. N. Charushin, O. N.
Chupakhin, S. Santra, Coord. Chem. Rev. 2017, 353, 1-57; (c) S.
Zhang, Y. Ma, H. Zhang, X. Zhou, X. Chen, Y. Qu, Angew. Chem. Int.
Ed. 2017, 56, 8245-8249; (d) X. Chang, T. Wang, Z.-J. Zhao, P. Yang,
J. Greeley, R. Mu, G. Zhang, Z. Gong, Z. Luo, J. Chen, Y. Cui, G. A.
Ozin, J. Gong, Angew. Chem. Int. Ed. 2018, 57, 15415-15419; (e) P.
Ling, Q. Zhang, T. Cao, F. Gao, Angew. Chem. Int. Ed. 2018, 57, 6819-
6824; (f) S.-C. Qi, X.-Y. Qian, Q.-X. He, K.-J. Miao, Y. Jiang, P. Tan,
X.-Q. Liu, L.-B. Sun, Angew. Chem. Int. Ed. 2019, 58, 10104-10109; (g)
R. T. Yang, A. J. Hernández-Maldonado, F. H. Yang, Science 2003,
301, 79-81.
[21] B. M. Nagaraja, V. S. Kumar, V. Shasikala, A. H. Padmasri, B.
Sreedhar, B. D. Raju, K. S. R. Rao, Catal. Commun. 2003, 4, 287-293.
[22] W. Gong, C. Chen, Y. Zhang, H. Zhou, H. Wang, H. Zhang, Y. Zhang,
G. Wang, H. Zhao, ACS Sustainable Chem. Eng. 2017, 5, 2172-2180.
[23] G.-P. Zhan, C.-D. Wu, Sci. Bull. 2019, 64, 385-390.
[24] M. J. Taylor, L. J. Durndell, M. A. Isaacs, C. M. A. Parlett, K. Wilson, A.
F. Lee, G. Kyriakou, Appl. Catal. B: Environ. 2016, 180, 580-585.
[25] S. Sitthisa, T. Sooknoi, Y. Ma, P. B. Balbuena, D. E. Resasco, J. Catal.
2011, 277, 1-13.
[5]
[6]
(a) R. Zhang, L. Hu, S. Bao, R. Li, L. Gao, R. Li, Q. Chen, J. Mater.
Chem. A 2016, 4, 8412-8420; (b) H. Xu, J.-X. Feng, Y.-X. Tong, G.-R.
Li, ACS Catal. 2017, 7, 986-991; (c) Y. Song, H. Wang, G. Liu, H.
Wang, L. Li, Y. Yu, L. Wu, J. Catal. 2019, 370, 461-469.
J. Song, J. Li, J. Xu, H. Zeng, Nano Lett. 2014, 14, 6298-6305.
This article is protected by copyright. All rights reserved.