Page 5 of 6
Journal of the American Chemical Society
Single-Electron-Transfer Mechanisms ChemCatChem 2016, 8, 1242; (j)
Gao, K.; Yoshikai, N. Low-Valent Cobalt Catalysis: New Opportunities for
C–H Functionalization Acc. Chem. Res. 2014, 47, 1208.
(17) Audic, B.; Wodrich, M. D.; Cramer, N. Mild complexation protocol for
chiral CpxRh and Ir complexes suitable for in situ catalysis Chem. Sci. 2019,
10, 781.
1
2
3
4
5
6
7
8
9
(10) Smits, G.; Audic, B.; Wodrich, M. D.; Corminboeuf, C.; Cramer, N. A
β-Carbon elimination strategy for convenient in situ access to
cyclopentadienyl metal complexes Chem. Sci. 2017, 8, 7174.
(11) Pesciaioli, F.; Dhawa, U.; Oliveira, J. C. A.; Yin, R.; John, M.;
Ackermann, L. Enantioselective Cobalt(III)-Catalyzed C−H Activation
Enabled by Chiral Carboxylic Acid Cooperation Angew. Chem., Int. Ed.
2018, 57, 15425.
(12) (a) Fukagawa, S.; Kato, Y.; Tanaka, R.; Kojima, M.; Yoshino, T.;
Matsunaga, S. Enantioselective C(sp3)–H Amidation of Thioamides
Catalyzed by a CobaltIII/Chiral Carboxylic Acid Hybrid System Angew.
Chem., Int. Ed. 2019, 58, 1153. During manuscript drafting a related report
appeared: (b) Liu, Y.-H.; Li, P.-X.; Yao, Q.-J.; Zhang, Z.-Z.; Huang, D.-Y.;
Le, M. D.; Song, H.; Liu, L.; Shi, B.-F. Cp*Co(III)/MPAA-Catalyzed
Enantioselective Amidation of Ferrocenes Directed by Thioamides under
Mild Conditions Org. Lett. 2019, 21, 1895.
(13) For reviews, see: (a) Newton, C. G.; Kossler, D.; Cramer, N.
Asymmetric Catalysis Powered by Chiral Cyclopentadienyl Ligands J. Am.
Chem. Soc. 2016, 138, 3935; (b) Ye, B.; Cramer, N. Chiral
Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C–
H Functionalizations Acc. Chem. Res. 2015, 48, 1308.
(18) (a) Heck, R. F. Dihalocarbonylcyclopentadienylcobalt Complexes
Inorg. Chem. 1965, 4, 855; (b) King, R. B. Organometallic Chemistry of the
Transition Metals. XI. Some New Cyclopentadienyl Derivatives of Cobalt
and Rhodium Inorg. Chem. 1966, 5, 82; (c) Sun, B.; Yoshino, T.;
Matsunaga,
S.;
Kanai,
M.
Air‐Stable
Carbonyl(pentamethylcyclopentadienyl)cobalt Diiodide Complex as
a
Precursor for Cationic (Pentamethylcyclopentadienyl)cobalt(III) Catalysis:
Application for Directed C-2 Selective C–H Amidation of Indoles Adv.
Synth. Catal. 2014, 356, 1491.
(19) (a) Amer, M. M.; Carrasco, A. C.; Leonard, D. J.; Ward, J. W.;
Clayden, J. Substituted Dihydroisoquinolinones by Iodide-Promoted
Cyclocarbonylation of Aromatic α-Amino Acids Org. Lett. 2018, 20, 7977;
(b) Palmer, N.; Peakman, T. M.; Norton, D.; Rees, D. C. Design and
synthesis of dihydroisoquinolones for fragment-based drug discovery
(FBDD) Org. Biomol. Chem. 2016, 14, 1599.
(20) (a) Yu, X.; Chen, K.; Wang, Q.; Zhang, W.; Zhu, J. Co(III)-Catalyzed
N-chloroamide-directed C–H activation for 3,4-dihydroisoquinolone
synthesis Org. Chem. Front. 2018, 5, 994; (b) Muniraj, N.; Prabhu, K. R.
Cobalt(III)-Catalyzed [4 + 2] Annulation of N-Chlorobenzamides with
Maleimides Org. Lett. 2019, 21, 1068; (c) Yu, X.; Chen, K.; Guo, S.; Shi, P.;
Song, C.; Zhu, J. Direct Access to Cobaltacycles via C–H Activation: N-
Chloroamide-Enabled Room-Temperature Synthesis of Heterocycles Org.
Lett. 2017, 19, 5348.
(21) (a) Hyster, T. K.; Dalton, D. M.; Rovis, T. Correction: Ligand design
for Rh(III)-catalyzed C–H activation: an unsymmetrical cyclopentadienyl
group enables a regioselective synthesis of dihydroisoquinolones Chem. Sci.
2018, 9, 8024; (b) Hyster, T. K.; Dalton, D. M.; Rovis, T. Ligand design for
Rh(III)-catalyzed C–H activation: an unsymmetrical cyclopentadienyl group
enables a regioselective synthesis of dihydroisoquinolones Chem. Sci. 2015,
6, 254.
(22) Trifonova, E. A.; Ankudinov, N. M.; Kozlov, M. V.; Sharipov, M. Y.;
Nelyubina, Y. V.; Perekalin, D. S. Rhodium(III) Complex with a Bulky
Cyclopentadienyl Ligand as a Catalyst for Regioselective Synthesis of
Dihydroisoquinolones through C−H Activation of Arylhydroxamic Acids
Chem. − Eur. J. 2018, 24, 16570.
(23) (a) Webb, N. J.; Marsden, S. P.; Raw, S. A. Rhodium(III)-Catalyzed C–
H Activation/Annulation with Vinyl Esters as an Acetylene Equivalent Org.
Lett. 2014, 16, 4718; (b) Sun, R.; Yang, X.; Chen, X.; Zhang, C.; Zhao, X.;
Wang, X.; Zheng, X.; Yuan, M.; Fu, H.; Li, R.; Chen, H. Rh(III)-Catalyzed
[4 + 2] Self-Annulation of N-Vinylarylamides Org. Lett. 2018, 20, 6755.
(24) Avilés, T.; Dinis, A.; Gonçalves, J. O.; Félix, V.; Calhorda, M. J.;
Prazeres, Â.; Drew, M. G. B.; Alves, H.; Henriques, R. T.; da Gama, V.;
Zanello, P.; Fontani, M. Synthesis, X-ray structures, electrochemistry,
magnetic properties, and theoretical studies of the novel monomeric
[CoI2(dppfO2)] and polymeric chain [CoI2(μ-dppfO2)n] J. Chem. Soc.,
Dalton Trans. 2002, 4595.
(25) Piou, T.; Romanov-Michailidis, F.; Romanova-Michaelides, M.;
Jackson, K. E.; Semakul, N.; Taggart, T. D.; Newell, B. S.; Rithner, C. D.;
Paton, R. S.; Rovis, T. Correlating Reactivity and Selectivity to
Cyclopentadienyl Ligand Properties in Rh(III)-Catalyzed C–H Activation
Reactions: An Experimental and Computational Study J. Am. Chem. Soc.
2017, 139, 1296.
(26) (a) Jeulin, S.; de Paule, S. D.; Ratovelomanana-Vidal, V.; Genêt, J.-P.;
Champion, N.; Dellis, P. Chiral biphenyl diphosphines for asymmetric
catalysis: Stereoelectronic design and industrial perspectives Proc. Natl.
Acad. Sci. U. S. A. 2004, 101, 5799; (b) Dierkes, P.; W. N. M. van Leeuwen,
P. The bite angle makes the difference: a practical ligand parameter for
diphosphine ligands J. Chem. Soc., Dalton Trans. 1999, 1519.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14) For seminal reports of Cpx ligand families, see: (a) Trifonova, E. A.;
Ankudinov, N. M.; Mikhaylov, A. A.; Chusov, D. A.; Nelyubina, Y. V.;
Perekalin, D. S. A Planar-Chiral Rhodium(III) Catalyst with a Sterically
Demanding Cyclopentadienyl Ligand and Its Application in the
Enantioselective Synthesis of Dihydroisoquinolones Angew. Chem., Int. Ed.
2018, 57, 7714; (b) Wang, S.-G.; Park, S. H.; Cramer, N. A Readily
Accessible Class of Chiral Cp Ligands and their Application in RuII-
Catalyzed Enantioselective Syntheses of Dihydrobenzoindoles Angew.
Chem., Int. Ed. 2018, 57, 5459; (c) Sun, Y.; Cramer, N. Tailored
trisubstituted chiral CpxRhIII catalysts for kinetic resolutions of phosphinic
amides Chem. Sci. 2018, 9, 2981; (d) Jia, Z.-J.; Merten, C.; Gontla, R.;
Daniliuc, C. G.; Antonchick, A. P.; Waldmann, H. General Enantioselective
C−H Activation with Efficiently Tunable Cyclopentadienyl Ligands Angew.
Chem., Int. Ed. 2017, 56, 2429; (e) Zheng, J.; Cui, W.-J.; Zheng, C.; You,
S.-L. Synthesis and Application of Chiral Spiro Cp Ligands in Rhodium-
Catalyzed Asymmetric Oxidative Coupling of Biaryl Compounds with
Alkenes J. Am. Chem. Soc. 2016, 138, 5242; (f) Ye, B.; Cramer, N. A
Tunable Class of Chiral Cp Ligands for Enantioselective Rhodium(III)-
Catalyzed C–H Allylations of Benzamides J. Am. Chem. Soc. 2013, 135,
636; (g) Ye, B.; Cramer, N. Chiral Cyclopentadienyl Ligands as
Stereocontrolling Element in Asymmetric C–H Functionalization Science
2012, 338, 504; (h) Hyster, T. K.; Knörr, L.; Ward, T. R.; Rovis, T.
Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated
Asymmetric C–H Activation Science 2012, 338, 500.
(15) For seminal reports of catalytic enantioselective applications with
additional metals, see: with Ir (a) Dieckmann, M.; Jang, Y.-S.; Cramer, N.
Chiral Cyclopentadienyl Iridium(III) Complexes Promote Enantioselective
Cycloisomerizations Giving Fused Cyclopropanes Angew. Chem., Int. Ed.
2015, 54, 12149; with Ru (b) Kossler, D.; Cramer, N. Chiral Cationic
CpxRu(II) Complexes for Enantioselective Yne-Enone Cyclizations J. Am.
Chem. Soc. 2015, 137, 12478; with Fe (c) Gajewski, P.; Renom-Carrasco,
M.; Facchini, S. V.; Pignataro, L.; Lefort, L.; de Vries, J. G.; Ferraccioli, R.;
Piarulli,
U.;
Gennari,
C.
Synthesis
of
(R)-BINOL-Derived
(Cyclopentadienone)iron Complexes and Their Application in the Catalytic
Asymmetric Hydrogenation of Ketones Eur. J. Org. Chem. 2015, 2015,
5526; with rare-earth metals and Sc (d) Song, G.; O, W. W. N.; Hou, Z.
Enantioselective C–H Bond Addition of Pyridines to Alkenes Catalyzed by
Chiral Half-Sandwich Rare-Earth Complexes J. Am. Chem. Soc. 2014, 136,
12209; (e) Teng, H.-L.; Luo, Y.; Wang, B.; Zhang, L.; Nishiura, M.; Hou, Z.
Synthesis of Chiral Aminocyclopropanes by Rare-Earth-Metal-Catalyzed
Cyclopropene Hydroamination Angew. Chem., Int. Ed. 2016, 55, 15406.
(16) (a) Gutnov, A.; Heller, B.; Fischer, C.; Drexler, H.-J.; Spannenberg, A.;
Sundermann, B.; Sundermann, C. Cobalt(I)-Catalyzed Asymmetric [2+2+2]
Cycloaddition of Alkynes and Nitriles: Synthesis of Enantiomerically
Enriched Atropoisomers of 2-Arylpyridines Angew. Chem., Int. Ed. 2004,
43, 3795; (b) Gutnov, A.; Drexler, H.-J.; Spannenberg, A.; Oehme, G.;
Heller, B. Syntheses of Chiral Nonracemic Half-Sandwich Cobalt
Complexes with Menthyl-Derived Cyclopentadienyl, Indenyl, and Fluorenyl
Ligands Organometallics 2004, 23, 1002.
(27) (a) Poater, A.; Ragone, F.; Mariz, R.; Dorta, R.; Cavallo, L. Comparing
the Enantioselective Power of Steric and Electrostatic Effects in Transition-
Metal-Catalyzed Asymmetric Synthesis Chem. − Eur. J. 2010, 16, 14348;
(b) Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.; Scarano,
V.; Cavallo, L. SambVca: A Web Application for the Calculation of the
Buried Volume of N-Heterocyclic Carbene Ligands Eur. J. Inorg. Chem.
2009, 2009, 1759; (c) Poater, A.; Ragone, F.; Giudice, S.; Costabile, C.;
Dorta, R.; Nolan, S. P.; Cavallo, L. Thermodynamics of N-Heterocyclic
Carbene Dimerization: The Balance of Sterics and Electronics
Organometallics 2008, 27, 2679.
(28) The iPr group of Co6 may rotate free in solution and adopt a different
conformation than in the solid state.
5
ACS Paragon Plus Environment