N. Zhao et al. / Phytochemistry 70 (2009) 32–39
39
Kumar, D., Gustafsson, C., Klessig, D.F., 2006. Validation of RNAi silencing specificity
using synthetic genes: salicylic acid-binding protein 2 is required for innate
immunity in plants. Plant J. 45, 863–868.
Lamb, C., Dixon, R.A., 1997. The oxidative burst in plant disease resistance. Annu.
Rev. Plant Physiol. Plant Mol. Biol. 48, 251–275.
Tuskan, G.A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam,
N., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao,
R.R., Bhalerao Rprao, R.P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., Busov,
V., Campbell, M., Carlson, J., Chalot, M., Chapman, J., Chen, G.-L., Cooper, D.,
Coutinho, P.M., Couturier, J., Covert, S., Cronk, Q., Cunningham, R., Davis, J.,
Degroeve, S., Dejardin, A., DePamphilis, C., Detter, J., Dirks, B., Dubchak, I.,
Duplessis, S., Ehlting, J., Ellis, B., Gendler, K., Goodstein, D., Gribskov, M.,
Grimwood, J., Groover, A., Gunter, L., Hamberger, B., Heinze, B., Helariutta, Y.,
Henrissat, B., Holligan, D., Holt, R., Huang, W., Islam-Faridi, N., Jones, S., Jones-
Rhoades, M., Jorgensen, R., Joshi, C., Kangasjarvi, J., Karlsson, J., Kelleher, C.,
Kirkpatrick, R., Kirst, M., Kohler, A., Kalluri, U., Larimer, F., Leebens-Mack, J.,
Leple, J.-C., Locascio, P., Lou, Y., Lucas, S., Martin, F., Montanini, B., Napoli, C.,
Nelson, D.R., Nelson, C., Nieminen, K., Nilsson, O., Pereda, V., Peter, G., Philippe,
R., Pilate, G., Poliakov, A., Razumovskaya, J., Richardson, P., Rinaldi, C., Ritland, K.,
Rouze, P., Ryaboy, D., Schmutz, J., Schrader, J., Segerman, B., Shin, H., Siddiqui, A.,
Sterky, F., Terry, A., Tsai, C.-J., Uberbacher, E., Unneberg, P., Vahala, J., Wall, K.,
Wessler, S., Yang, G., Yin, T., Douglas, C., Marra, M., Sandberg, G., de Peer, Y., Van,
Rokhsar, D., 2006. The genome of black cottonwood, Populus trichocarpa (Torr. &
Gray). Science 313, 1596–1604.
Malamy, J., Carr, J.P., Klessig, D.F., Raskin, I., 1990. Salicylic acid: a likely endogenous
signal in the resistance response of tobacco to viral infection. Science 250,
1
002–1004.
McRee, D.E., 1999. XtalView/Xfit – a versatile program for manipulating atomic
coordinates and electron density. J. Struct. Biol. 125, 156–165.
Mittler, R., Shulaev, V., Seskar, M., Lam, E., 1996. Inhibition of programmed cell
death in tobacco plants during a pathogen-induced hypersensitive response at
low oxygen pressure. Plant Cell 8, 1991–2001.
Morse, A.M., Tschaplinski, T.J., Dervinis, C., Pijut, P.M., Schmelz, E.A., Day, W., Davis,
J.M., 2007. Salicylate and catechol levels are maintained in nahG transgenic
poplar. Phytochemistry 68, 2043–2052.
Ostry, M.E., McNabb, H.S., 1985. Susceptibility of Populus species and hybrids to
disease in the north-central United States. Plant Dis. 69, 755–777.
Park, S.W., Kaimoyo, E., Kumar, D., Mosher, S., Klessig, D.F., 2007. Methyl salicylate is
a critical mobile signal for plant systemic acquired resistance. Science 318, 113–
Uknes, S., Dincher, S., Friedrich, L., Negrotto, D., Williams, S., Thompson-Taylor, H.,
Potter, S., Ward, E., Ryals, J., 1993. Regulation of pathogenesis-related protein-
1a gene expression in tobacco. Plant Cell 5, 159–169.
Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S.,
Kessmann, H., Ryals, J., 1994. Salicylic acid is not the translocated signal
responsible for inducing systemic acquired resistance but is required in signal
transduction. Plant Cell 6, 959–965.
1
16.
Rinaldi, C., Kohler, A., Frey, P., Duchaussoy, F., Ningre, N., Couloux, A., Wincker, P.,
Thiec, D.L., Fluch, S., Martin, F., Duplessis, S., 2007. Transcript profiling of poplar
leaves upon infection with compatible and incompatible strains of the foliar
rust Melampsora larici-populina. Plant Physiol. 144, 347–366.
Ross, J.R., Nam, K.H., D’Auria, J.C., Pichersky, E., 1999. S-adenosyl-
L-methionine:
salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent
production and plant defense, represents a class of plant methyltransferases.
Arch. Biochem. Biophys. 367, 9–16.
Yang, X., Tuskan, G., Cheng, Z.M., 2006. Divergence of the dof gene families in
poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after
duplication. Plant Physiol. 142, 820–830.
Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., Hunt, M.D.,
Zhang, J., 2003. Evolution by gene duplication: an update. Trends Ecol. Evol. 18,
292–298.
Zhao, N., Ferrer, J.L., Ross, J., Guan, J., Yang, Y., Pichersky, E., Noel, J.P., Chen, F., 2008.
Structural, biochemical and phylogenetic analyses suggest that indole-3-acetic
acid methyltransferase is an evolutionarily ancient member of the SABATH
family. Plant Physiol. 146, 455–467.
Zhao, N., Guan, J., Lin, H., Chen, F., 2007. Molecular cloning and biochemical
characterization of indole-3-acetic acid methyltransferase from poplar.
Phytochemistry 68, 1537–1544.
1
996. Systemic acquired resistance. Plant Cell 8, 1809–1819.
Seo, H.S., Song, J.T., Cheong, J.J., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S., Choi, Y.D.,
001. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-
2
regulated plant responses. Proc. Natl. Acad. Sci. USA 98, 4788–4793.
Shulaev, V., Silverman, P., Raskin, I., 1997. Airborne signalling by MeSA in plant
pathogen resistance. Nature 385, 718–721.
Smith, C.M., Campbell, M.M., 2004. Populus genotypes differ in infection by, and
systemic spread of, poplar mosaic virus. Plant Pathol. 53, 780–787.
Sticher, L., Mauch-Mani, B., Métraux, J.P., 1997. Systemic acquired resistance. Annu.
Rev. Phytopathol. 35, 235–270.
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The
clustalx windows interface: flexible strategies for multiple sequence alignment
aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.