Table 1 Comparison of direct flavo-enzyme regeneration systems
TON
ꢀ1
Enzyme, reference
Mediator
Source of reducing equivalents
TOF [h
]
Enzyme
Mediator
1
8
PAMO-P3
FMN, hn
EDTA
EDTA
EDTA
Cathode
Cathode
Cathode
Dithionite
NADPH
10
96
9.6
10
7.4
0.2
n/a
n/a
n/a
n/a
1
8,29
YqjM
P450-BM3 (this study)
FMN, hn
194
117
104
984
2268
17.4
4866
383
698
26
224
835
Deazaflavin, hn
FAD
Cobaltocene cation
Cobalt (III) sepulchrate
Dithionite
30
StyA
1
1
3
3
5
5
1
2
a
P450-BM3
P450-BM3
P450-BM3
P450-BM3
a
a
a
n/a
n/a
a
a
NADPH
a
33,34
n/a = not available. Further direct regeneration systems have been reported for other P450 monooxygenases.
components in a simple setup. It should be noted that the
present system was intended for a proof-of-principle and that
an optimization of the reaction conditions could lead to an
even more efficient setup.
7 R. Wichmann and D. Vasic-Racki, Adv. Biochem. Eng. Biotechnol.,
005, 92, 225–260.
H. Zhao and W. A. van der Donk, Curr. Opin. Biotechnol., 2003,
4, 583–589.
9 D. Holtmann and J. Schrader, in Modern Biooxidation, ed.
R. Schmid and V. B. Urlacher, Wiley-VCH, Weinheim, 2007.
10 H. Schewe, B. A. Kaup and J. Schrader, Appl. Microbiol. Biotechnol.,
2
8
1
Our experiments show that only the deazaflavin mediator in
+
the presence of catalytic amounts of NADP with respect to
2008, 78, 55–65.
the substrate is capable of mediating productively the light-
driven recycling pathway. The fact that the presence of
+
1
1
1 S. Schneider, M. G. Wubbolts, D. Sanglard and B. Witholt,
Appl. Environ. Microbiol., 1998, 64, 3784–3790.
2 U. Schwaneberg, C. Otey, P. C. Cirino, E. Farinas and
F. H. Arnold, J. Biomol. Screening, 2001, 6, 111–117.
3 R. R. Chen, Appl. Microbiol. Biotechnol., 2007, 74, 730–738.
4 Y. Ni and R. R. Chen, Biotechnol. Bioeng., 2004, 87,
804–811.
NADP is essential might be explained by NADP-induced
structural alterations necessary for catalysis, as previously
1
suspected for the Baeyer–Villiger monooxygenase PAMO.
1
1
8
A putative indirect pathway via the reduced nicotinamide
1
1
5 A. K. Udit, F. H. Arnold and H. B. Gray, J. Inorg. Biochem., 2004,
cofactor was previously excluded since the presence of
+
NADP was not necessary for the light-driven regeneration
9
6 F. Hollmann and A. Schmid, J. Inorg. Biochem., 2009, 103,
8, 1547–1550.
1
8
of the reductase YqjM. Furthermore, control experiments
using an alcohol dehydrogenase-based detection for NADPH
exclude this possibility as well (see ESIw Fig. S1).
313–315.
17 U. Schwaneberg, D. Appel, J. Schmitt and R. D. Schmid,
J. Biotechnol., 2000, 84, 249–257.
8 A. Taglieber, F. Schulz, F. Hollmann, M. Rusek and M. T. Reetz,
1
In summary, we report the first light-driven cytochrome
P450 catalyzed monoxygenation using a soluble deazaflavin
mediator in combination with an inexpensive sacrificial electron
donor. By using deazaflavins as electron mediators, instead of
normal flavins, a light-driven regeneration of flavin-dependent
enzymes can also proceed efficiently under aerobic conditions,
possibly due to suppression of the decoupling of the regeneration
reaction from the enzymatic reaction (Scheme 1). Furthermore,
the unnatural reaction conditions do not alter the regioselectivity
of the P450 catalyzed hydroxylation. The light-driven
regeneration system presented here requires only a simple
setup without additional regeneration enzyme and appears
to be generally applicable to flavin-dependent enzymes.
ChemBioChem, 2008, 9, 565–572.
19 F. Hollmann, A. Taglieber, F. Schulz and M. T. Reetz, Angew.
Chem., Int. Ed., 2007, 46, 2903–2906.
2
0 W. R. Frisell, C. W. Chung and C. G. Mackenzie, J. Biol. Chem.,
959, 234, 1297–1302.
21 V. Massey, J. Biol. Chem., 1994, 269, 22459–22462.
1
22 V. Massey and P. Hemmerich, Biochemistry, 1978, 17, 9–16.
2
3 J. L. Vermilion and M. J. Coon, J. Biol. Chem., 1978, 253,
812–8819.
8
2
4 J. A. Peterson, R. E. White, Y. Yasukochi, M. L. Coomes,
D. H. O’Keeffe, R. E. Ebel, B. S. Masters, D. P. Ballou and
M. J. Coon, J. Biol. Chem., 1977, 252, 4431–4434.
2
5 V. V. Shumyantseva, T. V. Bulko, R. D. Schmid and
A. I. Archakov, Biosens. Bioelectron., 2002, 17, 233–238.
6 T. Omura and R. Sato, J. Biol. Chem., 1964, 239, 2370–2378.
2
27 S. S. Boddupalli, R. W. Estabrook and J. A. Peterson, J. Biol.
Chem., 1990, 265, 4233–4239.
We thank Dina Klu
¨
tt for the synthesis of the deazaflavin
usig for help with GC
2
8 H. M. Girvan, D. J. Heyes, N. S. Scrutton and A. W. Munro,
J. Am. Chem. Soc., 2007, 129, 6647–6653.
¨
29 A. Taglieber, PhD thesis, Ruhr-Universitat Bochum, Bochum,
and Frank Kohler and Ulrich Ha
¨
analysis.
2
007.
0 F. Hollmann, K. Hofstetter, T. Habicher, B. Hauer and
A. Schmid, J. Am. Chem. Soc., 2005, 127, 6540–6541.
31 X. Fang and J. R. Halpert, Drug Metab. Dispos., 1996, 24,
1282–1285.
3
Notes and references
1
2
3
L. O. Narhi and A. J. Fulco, J. Biol. Chem., 1982, 257, 2147–2150.
L. P. Wen and A. J. Fulco, J. Biol. Chem., 1987, 262, 6676–6682.
M. A. Noble, C. S. Miles, S. K. Chapman, D. A. Lysek,
A. C. MacKay, G. A. Reid, R. P. Hanzlik and A. W. Munro,
Biochem. J., 1999, 339(Pt 2), 371–379.
32 L. A. Cowart, J. R. Falck and J. H. Capdevila, Arch. Biochem.
Biophys., 2001, 387, 117–124.
33 K. M. Faulkner, M. S. Shet, C. W. Fisher and R. W. Estabrook,
Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 7705–7709.
34 M. S. Shet, K. M. Faulkner, P. L. Holmans, C. W. Fisher and
R. W. Estabrook, Arch. Biochem. Biophys., 1995, 318, 314–321.
35 C. Helvig and J. H. Capdevila, Biochemistry, 2000, 39,
5196–5205.
4
5
V. B. Urlacher and S. Eiben, Trends Biotechnol., 2006, 24, 324–330.
M. K. Julsing, S. Cornelissen, B. Buhler and A. Schmid,
Curr. Opin. Chem. Biol., 2008, 12, 177–186.
6
S. C. Maurer, H. Schulze, R. D. Schmid and V. B. Urlacher,
Adv. Synth. Catal., 2003, 345, 802–810.
7
154 | Chem. Commun., 2009, 7152–7154
This journal is ꢁc The Royal Society of Chemistry 2009