4974
P. Radha Krishna et al. / Tetrahedron Letters 44 (2003) 4973–4975
Scheme 1.
Table 1. Baylis–Hillman reaction of acetylenic aldehydes
2. Overman, L. E.; Bell, K. L. J. Am. Chem. Soc. 1981, 103,
1851.
with activated alkenes16,17
3. (a) Matsuo, T.; Nishioka, T.; Hirano, M.; Suzuki, T.;
Tsushima, K.; Itaya, N.; Yoshika, M. Pesticide Sci. 1980,
11, 202; (b) Franck-Neumann, M.; Sedrati, M.; Vigneron,
J. P.; Bloy, V. Angew. Chem., Int. Ed. 1985, 24, 996; (c)
Sugai, T.; Kuwahara, S.; Hishino, C.; Matsuo, N.; Mori,
K. Agric. Biol. Chem. 1982, 46, 2579.
4. Mukaiyama, T.; Suzuki, K. Chem. Lett. 1980, 255.
5. Johnson, W. S.; Frei, B.; Gopalan, A. S. J. Org. Chem.
1981, 46, 1512.
6. (a) Pirkle, W. H.; Boeder, C. W. J. Org. Chem. 1978, 43,
2091; (b) Mori, K.; Akao, H. Tetrahedron Lett. 1978, 19,
4127; (c) Sato, K.; Nakayama, T.; Mori, K. Agric. Biol.
Chem. 1979, 43, 1571.
S. No.
Acetylenic
aldehyde
Activated
alkene
Yielda (%)
1
2
3
4
5
6
7
8
9
1
2
3
1
2
3
1
2
3
4
4
4
5
5
5
6
6
6
7a, 74
8a, 80
9a, 75
7b, 67
8b, 59
9b, 61
7c, 58 (30% de)b
8c, 64 (44% de)b
9c, 72 (24% de)b
a Yields of isolated products.
b As determined by 1H NMR.
7. Chan, K. K.; Cohen, N. C.; Denoble, J. P.; Specian, A.
C.; Saucy, G. J. Org. Chem. 1976, 41, 3497.
8. Patridge, J. J.; Chandha, N. K.; Uskokovic, M. R. J. Am.
Chem. Soc. 1973, 95, 7171.
9. Kluge, A. F.; Kertesz, D. J.; Yang, C. O.; Wu, H. Y. J.
Org. Chem. 1987, 52, 2860.
10. Ramachandran, P. V.; Rudd, M. T.; Ram Reddy, M. V.
Tetrahedron Lett. 1999, 40, 3819.
11. Medvedeva, A. S.; Demina, M. M.; Novopashin, P. S.;
Sarapulova, G. I.; Afonin, A. V. Mendeleev Commun.
2002, 110.
with aromatic aldehydes. It is pertinent to mention that
the earlier study resulted in establishing the stereochem-
istry as R by chemical correlation with an indepen-
dently synthesized optically pure compound. Similarly,
the absolute stereochemistry at the newly created center
of the major isomer of all adducts obtained in the
present study was assigned as (R)-7c, (R)-8c and (R)-
9c.
12. (a) Rama Rao, A. V.; Khrimian, A. P.; Radha Krishna,
P.; Yadagiri, P.; Yadav, J. S. Synth. Commun. 1988, 18,
2325; (b) Rama Rao, A. V.; Radha Krishna, P.; Yadav,
J. S. Tetrahedron Lett. 1989, 30, 1669.
13. (a) Radha Krishna, P.; Kannan, V.; Ilangovan, A.;
Sharma, G. V. M. Tetrahedron: Asymmetry 2001, 12, 829;
(b) Radha Krishna, P.; Kannan, V.; Sharma, G. V. M.;
Ramana Rao, M. H. V. Synlett 2003, 888.
In conclusion, it has successfully been demonstrated
that acetylenic aldehydes can be used in Baylis–Hillman
reactions for the synthesis of allyl propargyl alcohols.
The asymmetric version of this reaction using other
chiral acrylates is currently under investigation.
Acknowledgements
14. Senanayake, C. H.; Fang, K.; Grover, P.; Bakale, R. P.;
Vandenbossche, C. P.; Wald, S. A. Tetrahedron Lett.
1999, 40, 819.
The authors acknowledge Drs. J.S. Yadav and G.V.M.
Sharma for their keen interest in this work. E.R.S. and
V.K. acknowledge the financial support from the CSIR,
New Delhi, India.
15. Brandsma, L. Preparative Acetylenic Chemistry, 2nd ed.;
Elsevier Science: Amsterdam, 1988; p. 92.
16. General experimental procedure: To the acetylenic alde-
hyde (1 mmol) in DMSO (1 mL), DABCO (0.5 mmol)
and activated alkene (1.2 mmol) were added and the
reaction mixture stirred for 15 h at room temperature.
Then the reaction mixture was partitioned between ether
(3×15 mL) and water (25 mL), the collected organic layer
References
1. Midland, M. M.; Lee, P. E. J. Org. Chem. 1981, 46, 3934.