Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
DOI: 10.1039/D0CC02872J
and 111 Project (B14018).
Conflicts of interest
There are no conflicts to declare.
References
1
(a) X. Chen, H. Sun, J. Hu, X. Han, H. Liu and Y. Hu, Colloids
Surf. B, 2017, 152, 77; (b) W. Xu, G. Li, H. Long, G. Fu and L.
Pu, New J. Chem., 2019, 43, 12215.
(a) F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo
and G. Zhu, J. Am. Chem. Soc., 2011, 133, 8778; (b) J. Wen, K.
2
Yang, F. Liu, H. Li, Y. Xu and S. Sun, Chem. Soc. Rev., 2017, 46
,
6024.
3
(a) P. Xing and Y. Zhao, Small Methods, 2018, 2, 1700364; (b)
S. Zhai, X. Hu, Y. Hu, B. Wu and D. Xing, Biomaterials, 2017,
121, 41; (c) H. Chan, J. B. Ghrayche, J. Wei and A. K. Renfrew,
Eur. J. Inorg. Chem., 2017, 12, 1679.
E. -K. Lim, T. Kim, S. Paik, S. Haam, Y. -M. Huh and K. Lee,
Chem. Rev., 2015, 115, 327.
4
5
(a) Z. Yang, T. -A. Asoh and H. Uyama, Chem. Commun., 2020,
56, 411; (b) S. Nandi, H. Aggarwal, M. Wahiduzzaman, Y.
Belmabkhout, G. Maurin, M. Eddaoudi and S. Devautour-
Vinot, Chem. Commun., 2019, 55, 13251; (c) B. Slater, S. -O.
Wong, A. Duckworth, A. J. P. White, M. R. Hill and B. P.
Ladewig, Chem. Commun., 2019, 55, 7319; (d) L. Lupica-
Spagnolo, D. J. Ward, J. -J. Marie, S. Lymperopoulou and D.
Bradshaw, Chem. Commun., 2018, 54, 8506; (e) I. A. Lázaro,
To testify the GSH-responsiveness, the cytotoxicity assays
were conducted on both normal and cancer cells. As shown in
Fig. 4B, more than 70% of normal cells survive in the
treatment of UiO-66-SS-MP even in the high drug
concentration of 5 μg mL-1, in striking contrast to the low
viability of 30% when stimulated with 6-MP at equivalent
concentration. However, for SMMC-7721 which possess high-
level expression of GSH, the cell viability of the UiO-66-SS-MP
group sharply drops to 31% (Fig. 4C), which is similar to that of
the 6-MP group (36%). The IC50 of UiO-66-SS-MP for SMMC-
7721 is calculated to be 2.8 μg mL-1, which is almost 3-fold
smaller than the IC50 for NIH/3T3 (8.0 μg mL-1). This selective
cytotoxicity strongly proves the GSH-responsive release
capability of UiO-66-SS-MP. It is worth mentioning that
although trace amount of iodine was introduced into the
NMOF, the cytotoxicity resulted from the iodine could be
ignored (Fig. S20 and S21).
S. A. Lázaro and R. S. Forgan, Chem. Commun., 2018, 54
,
2792; (f) I. A. Lázaro and R. S. Forgan, Coord. Chem. Rev.,
2019, 380, 230.
6
7
8
J. Zhao, Y. Yang, X. Han, C. Liang, J. Liu, X. Song, Z. Ge and Z.
Liu, ACS Appl. Mater. Interfaces, 2017, 9, 23555.
L. Vial, R. F. Ludlow, J. Leclaire, R. Pérez-Fernández and S.
Otto, J. Am. Chem. Soc., 2006, 128, 10253.
(a) I. Ahmed, K. K. Adhikary, Y. -R. Lee, K. H. Row, K. -K. Kang
and W. -S. Ahna, Chem. Eng. J., 2019, 370, 792; (b) V. V.
Butova, A. P. Budnyk, K. M. Charykov, K. S. Vetlitsyna-
Novikova, C. Lamberti and A. V. Soldatov, Chem. Commun.,
2019, 55, 901.
J. Ren, X. Dyosiba, N. M. Musyoka, H. W. Langmi, M. Mathe
and S. Liao, Coord. Chem. Rev., 2017, 352, 187.
9
In summary, a GSH-responsive drug-delivery platform
based on NMOF was successfully developed. The resultant
UiO-66-(SH)2 carrier shows regular morphology and small
particle diameter of 40 nm, beneficial to the rapid cellular
uptake. Thanks to the redox-triggered drug release property,
potent anticancer drug 6-MP can be effectively transported
into the cancer cells, reducing the premature release into the
blood vessel or normal cells. As a result, the cytotoxicity of
such NMOF against SMMC-7721 cancer cells is almost 3-fold
higher than against NIH/3T3 normal cells, realizing the purpose
of selective cancer therapy. Extension of such NMOFs to
introduce thiol-containing targeting molecules, might pave the
way for building a broad variety of advanced targetable DDSs,
and finally improve the therapy efficacy.
10 X. Jia, J. He, L. Shen, J. Chen, Z. Wei, X. Qin, D. Niu, Y. Li and J.
Shi, Nano Lett., 2019, 19, 8690.
11 S. Dissegna, R. Hardian, K. Epp, G. Kieslich, M. -V. Coulet, P.
Llewellyn and R. A. Fischer, CrystEngComm, 2017, 19, 4137.
12 P. Deria, W. Bury, J. T. Hupp and O. K. Farha, Chem.
Commun., 2014, 50, 1965.
13 Q. Zhao, C. Wang, Y. Liu, J. Wang, Y. Gao, X. Zhang, T. Jiang
and S. Wang, Int. J. Pharm., 2014, 477, 613.
14 L. Xiong, D. Lan, H. Liang, L. Chen and Q. Wang, Mater. Lett.,
2018, 211, 296.
15 H. Kaur, G. C. Mohanta, V. Gupta, D. Kukkar and S. Tyagi, J.
Drug Delivery Sci. Technol., 2017, 41, 106.
16 X. Zhang, F. Dua, J. Huang, W. Lu, S. Liu and J. Yu, Colloids
Surf. B 2012, 100, 155.
17 W. Cai, J. Wang, C. Chu, W. Chen, C. Wu and G. Liu, Adv. Sci.,
2019, 6, 1801526.
18 H. Zheng, Y. Rao, Y. Yin, X. Xiong, P. Xu and B. Lu, Carbohydr.
Polym., 2011, 83, 1952.
This work was financially supported by the Natural Science
Foundation of China (21975072, 51902106, 51372084), the
Natural Science Foundation of Shanghai (18ZR1408700),
Projects of Shanghai Municipality (18JC1410802), the National
19 J. Yang, X. Chen, Y. Li, Q. Zhuang, P. Liu and J. Gu, Chem.
Mater., 2017, 29, 4580.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins