The Formation of 1-Aryl-Substituted Naphthalenes by an Unusual Cyclization of Arylethynes
GC Separation Conditions: The product yields and the isomeric ra- = 6.8 Hz, 1 H), 7.23 (s, 1 H), 6.93–7.08 (m, 4 H), 3.91 (s, 3 H), 3.82
FULL PAPER
tios for all the reactions were determined by GC analyses per-
formed on a Carlo Erba HRGC 5160 instrument with a 30 m Sup-
elco SPB-5 capillary column and a FID detector. Chemical yields
were determined by addition of a suitable internal standard (do-
decane or tetradecane) to the reaction mixture at the end of each
experiment and were reproducible within 2% for multiple experi-
ments.
(s, 3 H). EI MS: m/z (%) 264 (100).
6-Methoxy-1-(3-methoxyphenyl)naphthalene: Oil. 1H NMR
(400 MHz, CDCl3): δ = 7.78 (d, J = 8 Hz, 2 H), 7.35–7.48 (m, 3 H),
7.21–7.26 (m, 3 H), 6.84–6.90 (m, 2 H), 6.76 (d, J = 7.6 Hz, 1 H),
3.79 (s, 3 H), 3.48 (s, 3 H). EI MS: m/z (%) 264 (100).
Chemicals: All the reagents and solvents (Aldrich) were of the high-
est analytical grade and were used without further purification. The
free bases H2TDCPP and H2OEP, where TDCPP is the dianion of
5,10,15,20-tetrakis(2Ј,6Ј-dichlorophenyl)porphyrin and OEP is the
dianion of 2,3,7,8,12,13,17,18-octaethylporphyrin, were synthe-
sized by literature methods.[14] Ru(OEP)CO was obtained by litera-
ture methods.[15] Rh(TDCPP)Cl was synthesized as described in
another paper from our laboratory.[3j] All the cyclotrimerization
products reported in this paper have been described previously.[8]
Acknowledgments
We thank Mr. Alessandro Leoni and Mr. Giuseppe D’Arcangelo
for their valuable technical assistance and MIUR for financial sup-
port.
[1] Transition Metals for Organic Synthesis. Building Blocks and
Fine Chemicals (Eds.: M. Beller, C. Bolm), Wiley-VCH,
Weinheim, 1998.
[2] a) B. Meunier, Chem. Rev. 1992, 92, 1411–1456; b) D. Mansuy,
Coord. Chem. Rev. 1993, 125, 129–142; c) M. W. Grinstaff,
M. G. Hill, J. A. Labinger, H. B. Gray, Science 1994, 264, 1311–
1313; d) P. E. Ellis Jr, J. E. Lyons, Coord. Chem. Rev. 1990, 105,
181–192; e) J. F. Bartoli, O. Brigaud, P. Battioni, D. Mansuy,
J. Chem. Soc. Chem. Commun. 1991, 440–441; f) J. E. Lyons,
P. E. Ellis Jr. in Metalloporphyrins in Catalytic Oxidations (Ed.:
R. A. Sheldon), Marcel Dekker, New York, 1994, p. 314; g)
T. G. Traylor, S. Tsuchiya, Inorg. Chem. 1987, 27, 1338–1339;
h) T. Wijesekara, A. Matsumoto, D. Dolphin, D. Lexa, Angew.
Chem. Int. Ed. Engl. 1990, 29, 1028–1030; i) M. N. Carrier,
C. Scheer, P. Gouvine, J. F. Bartoli, P. Battioni, D. Mansuy,
Tetrahedron Lett. 1990, 31, 6645–6648; j) B. Meunier, A. Rob-
ert, G. Pratviel, J. Bernadou, in The Porphyrin Handbook
(Eds. K. M. Kadish, K. M. Smith, R. Guilard), vol. 4, pp. 119–
169; k) See article Recent Developments in Biomimetic Oxi-
dation Catalysis by B. Meunier published in a special issue: B.
Meunier, J. Mol. Catal. A: Chem. 1996, 113, 1–422.
Reactions
Typical Procedure for the Reaction Catalyzed by Metalloporphyrins
1 or 2: The catalyst (1.8 mg, 1.7 or 2.7 µmol) was dissolved in phe-
nylacetylene (1.4 mL, 13.7 mmol) and the resulting solution was
warmed between 120° and 180 °C for 18 hours, under nitrogen.
Typical Procedure for the Reaction Catalyzed by Metalloporphyrin
1 or 2 in 1,2-Dichlorobenzene: The catalyst (1.8 mg, 1.7 or 2.7 µmol)
was dissolved in 1,2-dichlorobenzene (3 mL unless otherwise
stated), and phenylacetylene (1.1 mL, 0.98 mmol) was added. The
resulting solution was warmed at 130–140 °C for 36 hours or at
180 °C for 18 hours, under nitrogen.
Reaction between Phenylacetylene and Diphenylacetylene: Catalyst
2 (1.8 mg, 1.7 µmol) was dissolved in phenylacetylene (1.4 mL,
13.7 mmol). Diphenylacetylene (2,43 g, 13.7 mmol) was added and
the resulting solution was warmed at 180 °C for 18 hours under
nitrogen.
[3] a) J. Robbins Wolf, C. G. Hamaker, J.-P. Djukic, T. Kodadek,
L. K. Woo, J. Am. Chem. Soc. 1995, 117, 9194–9199; b) J. L.
Maxwell, K. C. Brown, D. W. Bartley, T. Kodadek, Science
1992, 256, 1544–1547; c) S. O’Malley, T. Kodadek, Tetrahedron
Lett. 1991, 32, 2445–2448; d) D. W. Bartley, T. Kodadek, Tetra-
hedron Lett. 1990, 31, 6303–6306; e) H. J. Callot, C. Piechocki,
Tetrahedron Lett. 1980, 21, 3489–3492; f) H. J. Callot, E. Metz,
C. Piechocki Tetrahedron 1982, 38, 2365–2369; g) C. G.
Hamaker, G. A. Mirafzal, L. K. Woo, Organometallics 2001,
20, 5171–5176; h) P. Tagliatesta, A. Pastorini, J. Mol. Catal. A:
Chem. 2003, 198, 57–61; i) C. G. Hamaker, J.-P. Djukic, D. A.
Smith, L. K. Woo, Organometallics 2001, 20, 5189–5199; j) P.
Tagliatesta, A. Pastorini, J. Mol. Catal. A: Chem. 2002, 185,
127–133; k) A. Penoni, R. Wanke, S. Tollari, E. Gallo, D. Mu-
sella, F. Ragaini, F. Demartin, S. Cenini, Eur. J. Inorg. Chem.
2003, 1452–1460; l) E. Galardon, P. Le Maux, G. Simonneaux,
Chem. Commun. 1997, 927–928; m) M. Frauenkron, A. Berkes-
sel, Tetrahedron Lett. 1997, 38, 7175–7176; n) Z. Gross, N. Gal-
ili, L. Simkhovic, Tetrahedron Lett. 1999, 40, 1571–1574; o) E.
Galardon, P. Le Maux, L. Toupet, G. Simonneaux, Organomet-
allics 1998, 17, 565–569; p) E. Galardon, P. Le Maux, G. Si-
monneaux, Tetrahedron 2000, 56, 615–621; q) J.-L. Zhang, C.-
M. Che, Org. Lett. 2002, 4, 1911–1914; r) Y. Li, J.-S. Huang,
G.-B. Xu, N. Zhu, Z.-Y. Zhou, C.-M. Che, K.-Y. Wong, Chem.
Eur. J. 2004, 10, 3486–3502.
The crude products of all the reactions were purified by column
chromatography (SiO2, hexane/diethyl ether). The fractions con-
taining the desired compounds were evaporated under vacuum, and
the 1-arylnaphthalenes and isomeric triphenylbenzenes were sepa-
1
rated by column flash chromatography and identified by their H
NMR and mass spectra. An authentic sample of 1-phenylnaphtha-
lene, available from Aldrich, was used for the identification of the
reaction products from phenylacetylene. All the elemental analysis
gave satisfactory results.
Analytical data
7-Methoxy-1-(4-methoxyphenyl)naphthalene: M.p. 62–63 °C. 1H
NMR (400 MHz, CDCl3): δ = 7.84 (d, J = 8.8 Hz,1 H), 7.80 (t, J
= 4.8 Hz, 1 H), 7.49 (d, J = 8.8 Hz, 2 H), 7.41 (d, J = 4.4 Hz, 2 H),
7.30 (d, J = 1.6 Hz, 1 H), 7.21 (dd, J = 8.8, 1.6 Hz, 1 H), 7.08 (d,
J = 8.8 Hz, 2 H). EI MS: m/z(%) = 264 (100), 240 (12).
1
7-Methyl-1-(4-methylphenyl)naphthalene: Oil. H NMR (400 MHz,
CDCl3): δ = 7.83 (d, J = 8.4 Hz, 2 H), 7.72 (s, 1 H), 7.38–7.54 (m,
4 H), 7.32–7.37 (m, 3 H). EI MS: m/z (%) 232 (100), 217 (70), 202
(50).
7-Chloro-1-(4-chlorophenyl)naphthalene: M.p. 40–41 °C. 1H NMR
(400 MHz, CDCl3): δ = 7.86 (d, J = 8.4 Hz, 2 H), 7.82 (s, 1 H),
7.45–7.57 (m, 4 H), 7.56–7.40 (m, 3 H). EI MS: m/z (%) 272 (65),
237 (14), 202 (100).
[4] C.-Y. Zhou, W.-Y., C.-M. Che, Org. Lett. 2002, 4, 3235–3238.
[5] a) E. Galardon, P. Le Maux, G. Simonneaux, J. Chem. Soc.
Chem. Commun. 1997, 927–928; b) E. Galardon, S. Roue’, P.
Le Maux, G. Simonneaux, Tetrahedron Lett. 1998, 39, 2333–
2334.
[6] F. Ragaini, A. Penoni, E. Gallo, S. Tollari, C. Li Gotti, M.
Lapadula, E. Mangioni, S. Cenini, Chem. Eur. J. 2003, 9, 249–
258.
8-Methoxy-1-(3-methoxyphenyl)naphthalene: Oil. 1H NMR
(400 MHz, CDCl3): δ = 7.80 (d, J = 9.2 Hz, 1 H), 7.72 (d, J = 8 Hz,
1 H), 7.45 (t, J = 7.6 Hz, 1 H), 7.36 (t, J = 7.6 Hz, 1 H), 7.26 (d, J
Eur. J. Org. Chem. 2005, 889–894
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
893