Y. Jain et al.
2. Banerjee B (2017) Ultrason Sonochem 35:1–14
5.2 Synthetic Procedure for Synthesis of GO‑Fe3O4@
CuO
3. Benci K, Mandic L, Suhina T et al (2012) Molecules (Basel, Swit-
zerland) 17:11010–11025
4. Breslow R (1991) Acc Chem Res 24:159–164
5. Chetia M, Ali AA, Bhuyan D et al (2015) New J Chem
39:5902–5907
GO was synthesized using modifed Hummer’s method [21,
30, 56]. To prepare this composite, Graphene oxide in 25 mL
water was taken in a fat bottom fask and ultrasonicate for
60 min for dispersion. Then, 1 mmol Fe2+, 2 mmol Fe3+ salts
and 2 M NaOH were slowly added into a reaction vessel.
After the mixture ultrasonicate for 1.5 h, CuNO3 and 2 M
NaOH were added simultaneously and slowly into reaction
vessel. After the mixture ultrasonicate for 1.5 h, precipitate
was formed which was then separated, washed with deion-
ized water (3×10) and ethanol (2×10) and dried.
6. Chiplunkar PP, Zhao X, Tomke PD et al (2018) Ultrason Sono-
chem 40:587–593
7. Cravotto G, Fokin VV, Garella D et al (2010) J Comb Chem
12:13–15
8. Dabiri M, Kasmaei M, Salari P et al (2016) RSC Adv
6:57019–57023
9. Dehghanzad B, Razavi Aghjeh MK, Rafeie O et al (2016) RSC
Adv 6:3578–3585
10. Dubey N, Sharma P, Kumar A (2015) Synth Commun
45:2608–2626
11. Fan Q, Lan Q, Zhang M et al (2016) J Semicond 37:083003
12. Gholinejad M, Jeddi N (2014) ACS Sustain Chem Eng
2:2658–2665
5.3 Typical Procedure for the Synthesis
of 1,4‑Disubstituted 1,2,3‑Triazoles Catalyzed
Using the GO‑Fe3O4@CuO Catalyst (3a–k)
13. Ghosh D, Rhodes S, Hawkins K et al (2015) New J Chem
39:295–303
14. Gonzalez MDC, Oton F, Espinosa A et al (2015) Org Biomol
Chem 13:1429–1438
15. Gupta R, Jain A, Jain M et al (2018) Cattle Lett 8:2180–2194
16. He XP, Zang Y, James TD et al (2016) Chem Commun (Camb)
53:82–90
A fat bottom fask containing coumarin alkyne (1.1 mmol,
0.220 g), sugar azide (1 mmol, 0.373 g), water (10 mL) and
GO-Fe3O4-Cu (6 mg) catalyst was ultrasonicated at 45 °C.
After completion of the reaction as monitored through thin
layer chromatography (TLC), the catalyst was removed by
means of magnet. The reaction mixture was then extracted
with ethyl acetate (10 mL × 3), and dried over anhydrous
17. Hein JE, Fokin VV (2010) Chem Soc Rev 39:1302–1315
18. Hsu Y-W, Hsu T-K, Sun C-L et al (2012) Electrochimica Acta
82:152–157
19. Hudson R, Li C-J, Moores A (2012) Green Chem 14:622
20. Huisgen R (1963) Angew Chem Int Ed 2:565–598
21. Hummers WS, Ofeman RE (1958) J Am Chem Soc 80:1339
22. Jain A, Jain Y, Gupta R et al (2018) J Fluor Chem 212:153–160
23. Jain Y, Gupta R, Yadav P et al (2019) ACS Omega 4:3582–3592
24. Jain Y, Kumari M, Gupta R (2019) Tetrahedron Lett 60:1215–1220
25. Jiao Y, Zhu B, Chen J et al (2015) Theranostics 5:173–187
26. Klein R, Brown D, Turnley AM (2007) BMC Neurosci 8:61
27. Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed
40:2004–2021
1
Na2SO4. Finally, the H NMR and HRMS analysis of the
products was done to confrm the structures of the resultant
1,4-disubstituted 1,2,3-triazole derivatives.
5.4 Gram scale Synthesis of 1,4‑Disubstituted
28. Kolb HC, Sharpless KB (2003) Drug Discov Today 8:1128–1137
29. Kumari M, Gupta R, Jain Y (2019) Synth Commun 49:529–538
30. Liao K-H, Mittal A, Bose S et al (2011) ACS Nano 5:1253–1258
31. Liu H, Wu X, Li X et al (2014) Chin J Catal 35:1997–2005
32. Liu S, Xu Q, Latthe SS et al (2015) RSC Adv 5:68293–68298
33. Lonkar SP, Ahmed AA (2014) J Thermodyn Catal 5:1–6
34. López-Rojas P, Janeczko M, Kubiński K et al (2018) Molecules
23:199
Triazoles (3a)
In a fat bottom fask, to a mixture of sugar azide (3 mmol,
1.119 g) and coumarin alkyne (3.3 mmol, 0.660 g), GO-
Fe3O4-Cu catalyst (18 mg) was added in 10 ml water. The
reaction mixture was ultrasonicated until TLC show com-
pletion of reaction at 45 °C. The catalyst was removed from
reaction mixture using an external magnet. The resulting
reaction mixture was extracted with ethyl acetate and dried
over anhydrous Na2SO4. Product was obtained with 93%
isolated yields as a white solid.
35. Naeimi H, Shaabani R (2017) Ultrason Sonochem 34:246–254
36. Neeru S, Vikas S, Yachana J et al (2017) Macromol Symp
376:1700006
37. Panaka S, Trivedi R, Jaipal K et al (2016) J Organomet Chem
813:125–130
38. Petrova KT, Potewar TM, Correia-Da-Silva P et al (2015) Carbo-
hydr Res 417:66–71
39. Rajaganesh R, Ravinder P, Subramanian V et al (2011) Carbohydr
Res 346:2327–2336
Acknowledgements Authors are thankful to Materials Research
Centre, MNIT Jaipur for providing spectral facilities. Y. Jain and M.
Kumari are acknowledges to MNIT Jaipur for providing fnancial assis-
tance and DST, New Delhi for awarding INSPIRE fellowship scheme
(IF140506) respectively.
40. Rostovtsev VV, Green LG, Fokin VV et al (2002) Angew Chem
Int Ed 41:2596–2599
41. Saadatjoo N, Golshekan M, Shariati S et al (2017) Arab J Chem
10:S735–S741
42. Sabaqian S, Nemati F, Heravi MM et al (2017) Appl Organomet
Chem 31:e3660
43. Salamatmanesh A, Kazemi M, Yazdani E et al (2018) Catal Lett
148(10):3257–3268
References
44. Sharghi H, Khalifeh R, Doroodmand MM (2009) Adv Synth Catal
351:207–218
1. Baig RBN, Varma RS (2013) Chem Commun 49:752–770
1 3