L. Chaveriat et al. / Tetrahedron 60 (2004) 2079–2081
2081
3.1.2. 6-Azido-6-deoxy-D-galactono-1,4-lactone (7). A
stirred solution of 6-bromo-6-deoxy-D-galactono-1,4-lac-
tone (6) (1 g, 4.15 mmol) in DMF (10 mL) was treated with
lithium azide (20% in H2O) (12 mL, 1.3 equiv.) and set
aside at 80 8C for 1 h. The mixture was poured into ice-
water (15 mL) and the product extracted with ethyl acetate.
The organic layer was concentrated in vacuo and the
obtained residue was chromatographed on silica gel. Elution
with EtOAc–hexanes (7:3) to give 7 (0.74 g, 91%) as
yellow oil: Rf 0.7 (EtOAc–MeOH 9:1); [a]2D4 265 (c 1.0,
MeOH). Lit.7 [a]D23 270.6 (c 1.0, MeOH); 1H NMR
(300 MHz, MeOD) d 4.40 (d, 1H, J¼8.8 Hz), 4.27 (dd,
1H, J¼8.2, 8.8 Hz), 4.11 (dd, 1H, J¼2.8, 8.1 Hz), 3.91 (m,
1H), 3.51 (dd, 1H, J¼7.7, 12.7 Hz), 3.41 (dd, 1H, J¼5.0,
12.7 Hz); 13C NMR (75 MHz, MeOD) d 175.0, 80.8, 74.6,
73.6, 68.5, 53.4.
azide, as in case of 6 gave 12 (0.58 g, 98%) as yellow oil: Rf
0.6 (EtOAc–MeOH 9:1); [a]2D4 þ20 (c 1.0, MeOH). Anal.
calcd % for C6H9N3O5: C, 35.47; H, 4.47. Found % C,
35.42; H, 4.42; 1H NMR (300 MHz, MeOD) d 4.68 (d, 1H,
J¼4.5 Hz), 4.57 (dd, 1H, J¼2.7, 4.4 Hz), 4.52 (dd, 1H,
J¼2.7, 8.9 Hz), 4.15 (m, 1H), 3.55 (dd, 1H, J¼2.2,
12.8 Hz), 3.39 (dd, 1H, J¼4.9, 12.8 Hz). 13C NMR
(75 MHz, MeOD) d 176.6, 79.2, 71.3, 69.6, 67.4, 54.2.
3.1.7. 6-Amino-6-deoxy-D-mannono-1,6-lactam (13).
Compound 12 (0.3 g, 1.48 mmol) in ethanol was treated
with palladium on charcoal and then hydrogenated for 18 h,
as in case of 7, to give 13, in quantitative yield, as white
solid: Rf 0.4 (EtOAc–MeOH 3:2); mp 150–152 8C; [a]D24
þ47 (c 1.0, H2O). Anal. calcd % for C6H11NO5: C, 40.68;
1
H, 6.26. Found % C, 40.60; H, 6.12; H NMR (300 MHz,
D2O) d 4.71 (d, 1H, J¼5.6 Hz), 3.98 (m, 2H), 3.74 (m, 1H),
3.52 (dd, 1H, J¼6.8, 13.4 Hz), 2.84 (m, 1H). 13C NMR
(75 MHz, D2O) d 175.9, 75.1, 72.2, 75.1, 68.8, 67.4, 39.7.
3.1.3. 6-Amino-6-deoxy-D-galactono-1,6-lactam (8). A
solution of compound 7 (0.35 g, 1.72 mmol) in ethanol
(8 mL) was treated with palladium on charcoal (10%,
0.035 g) and then hydrogenated for 18 h at room tempera-
ture. The mixture was filtered through a layer of celite and
the filtrate was concentrated in vacuo to give 8 as white
solid: Rf 0.4 (EtOAc–MeOH 3:2); mp 168–170 8C; [a]D24
213 (c 1.0, H2O). Lit.7 [a]D25 216.3 (c 1.0, H2O); mp 175–
176 8C; 1H NMR (300 MHz, D2O) d 4.43 (d, 1H,
J¼9.3 Hz), 3.91 (m, 1H), 3.71 (m, 2H), 3.50 (dd, 1H,
J¼4.6, 15.8 Hz), 3.21 (dd, 1H, J¼2.9, 15.8 Hz); 13C NMR
(75 MHz, D2O) d 176.4, 73.3, 69.1, 40.6.
Acknowledgements
`
We thank the Ministere de la Recherche and the Conseil
Regional de Picardie for financial support.
´
References and notes
3.1.4. D-mannono-1,4-lactone (10). To a solution of
D-mannose (9) (5 g, 2.8 mmol) and sodium hydrogencarbo-
nate (3.35 g, 4 mmol) in distilled water (50 mL) cooled at
0 8C, bromine (3£1 mL, 58.5 mmol) was added at 20 min
intervals. The reaction mixture was stirred at this tempera-
ture for 1 h and then for 4 days at room temperature. Sodium
thiosulfate was added to destroy the excess of bromine and
the solvent was removed in vacuo to give a white solid. The
obtained solid was chromatographed on silica gel. Elution
with EtOAc–MeOH (9:1) and recrystallized from
2-propanol to give quantitatively compound 10 as white
solid: Rf 0.5 (EtOAc–MeOH 7:3); mp 145–146 8C; [a]D24
þ53 (c 1.0, H2O). Lit.11 mp 151 8C; [a]D20 þ51.2 (c 2, H2O);
1H NMR (300 MHz, DMSO-d6) d 4.55 (d, 1H, J¼4.6 Hz),
4.50 (dd, 1H, J¼2.7, 4.6 Hz), 4.31 (dd, 1H, J¼8.9, 2.8 Hz),
3.96 (m, 1H), 3.80 (dd, 1H, J¼2.8, 11.7 Hz), 3.67 (dd, 1H,
J¼5.1, 11.7 Hz); 13C NMR (75 MHz, DMSO-d6) d 177.1,
78.6, 71.2, 69.8, 68.5, 63.2.
1. Bols, M. Acc. Chem. Res. 1998, 31, 1.
2. Anzeveno, P. B.; Creemer, L. J.; Daniel, J. K.; King, C. H. R.;
Liu, P. S. J. Org. Chem. 1989, 54, 2539, and references cited
therein.
3. Woynaroska, B.; Wilkiel, H.; Sharma, M.; Carpenter, N.;
Fleet, G. W. J.; Bernacki, R. J. Anticancer Res. 1992, 12, 161,
and references cited therein.
4. Fleet, G. W. J.; Karpas, A.; Raymond, A. D.; Fellows, L. E.;
Tyms, A. S.; Peterson, S.; Namgoong, S. K.; Ramsden, N. O.;
Smith, P. W.; Son, J. C.; Wilson, F.; Witty, D. R.; Jacob, G. S.;
Rademacher, T. W. FEBS Lett. 1988, 237, 128, and references
cited therein.
5. Le Merrer, Y.; Poitout, L.; Depezay, J. C.; Dosbaa, I.;
Geoffroy, S.; Foglietti, M. J. Bioorg. Med. Chem. 1997, 5, 519.
6. (a) Dax, K.; Graigg, V.; Koblinger, B.; Stutz, A. E.
J. Carbohydr. Chem. 1990, 9, 479. (b) Lohray, B. B.;
Jayamma, Y.; Chatterjee, M. J. Org. Chem. 1995, 60, 5958.
(c) Poitout, L.; Le Merrer, Y.; Depezay, J. C. Tetrahedron Lett.
1996, 37, 1613.
3.1.5. 6-Bromo-6-deoxy-D-mannono-1,4-lactone (11).
Reaction of 10 (2.15 g, 12 mmol) with triphenylphosphine
and carbon tetra-bromide in pyridine, as in case of 5 gave 11
(2 g, 69%) as white solid: Rf 0.44 (EtOAc–MeOH 9:1); mp
136–137 8C; [a]D24 þ55 (c 1.0, H2O). Lit.12 mp 136–
139 8C; [a]2D0 þ54.7 (c 1.1, H2O). 1H NMR (300 MHz,
MeOD) d 4.61 (d, 1H, J¼4.6 Hz), 4.47 (dd, 1H, J¼2.7,
4.6 Hz), 4.32 (dd, 1H, J¼2.7, 9.0 Hz), 4.13 (m, 1H), 3.75
(dd, 1H, J¼2.8, 11.6 Hz), 3.63 (dd, 1H, J¼5.1, 11.6 Hz).
13C NMR (75 MHz, MeOD) d 177.3, 80.6, 71.8, 70.1, 67.5,
37.4.
7. Long, D. D.; Stetz, R. J. E.; Nash, R. J.; Marquess, D. G.;
LIoyd, J. D.; Winters, A. L.; Asano, N.; Fleet, G. W. J. J. Chem.
Soc., Perkin Trans. 1 1999, 901.
8. Joseph, C. C.; Regeling, H.; Zwanenburg, B.; Chittenden, G. J.
F. Tetrahedron 2002, 58, 6907.
9. Bouchez, V.; Stasik, I.; Beaupere, D.; Uzan, R. Tetrahedron
Lett. 1997, 38, 7733.
10. (a) Isbell, H. S.; Hudson, C. S. J. Am. Chem. Soc. 1929, 51,
2225. (b) Nelson, W. L.; Cretcher, L. H. J. Am. Chem. Soc.
1930, 52, 403.
11. Vekemans, J. A. J. M.; Boerekamp, J.; Godefroi, E. F.;
Chittenden, G. J. F. Recl. Trav. Chim. Pays-Bas. 1985,
104(10), 266.
3.1.6. 6-Azido-6-deoxy-D-mannono-1,4-lactone (12).
Reaction of 11 (0.7 g, 2.9 mmol) in DMF with lithium
12. Lundt, I.; Frank, H. Tetrahedron 1994, 50(46), 13285.