T. Yanagihara, N. Murao, H. Watanabe, J. Goto and T. Niwa,
conducted. For deuterium exchange experiments, 30 and 31
were dissolved in D2O and investigated by negative-ion ESI.
J. Mass Spectrom., 1997, 32, 401; (d) B. L. Ackermann, T. A.
Gillespie, B. T. Regg, K. F. Austin and J. E. Coutant, J. Mass
Spectrom., 1996, 31, 681.
14 S. Murray, N. B. Rendell and G. W. Taylor, J. Chromatogr., 1996,
738, 191.
15 B. Boss, E. Richling, M. Herderich and P. Schreier, Phytochemistry,
1999, 50, 219.
16 R. W. Reiser and A. J. Fogiel, Rapid Commun. Mass Spectrom.,
1994, 8, 252.
17 P. Rudewicz and K. M. Straub, Anal. Chem., 1986, 58, 2928.
18 K. B. Tomer and M. L. Gross, Biomed. Environ. Mass Spectrom.,
1988, 15, 89.
Acknowledgements
This research was supported in part by grant GM53830 from
the National Institutes of Health and award DS0260 from the
Research Corporation. SGR gratefully acknowledges a post-
doctoral fellowship from the Pew Latin American Fellows
Program in the Biomedical Sciences (P0236SC).
19 S. J. Gaskell and M. H. Reilly, Rapid Commun. Mass Spectrom.,
1988, 2, 139.
References
1 (a) X. Fu, M. L. G Ferreira, F. J. Schmitz and M. Kelly, J. Org.
Chem., 1999, 64, 6706; (b) J. A. Kalaitzis, P. de A. Leone, L. Harris,
M. S. Butler, A. Ngo, J. N. A. Hooper and R. J. Quinn, J. Org.
Chem., 1999, 64, 5571; (c) T. Wakimoto, A. Maruyama,
S. Matsunaga and N. Fusetani, Bioorg. Med. Chem. Lett., 1999, 9,
727; (d) F. D. Horgan, B. Sakamoto and P. J. Scheuer. J. Nat. Prod.,
2000, 63, 210; (e) Y. Nakao, S. Matsunaga and N. Fusetani,
Tetrahedron Lett., 1993, 34, 1511.
2 Y. Kikuchi, M. Ishibashi, T. Sasaki and J. Kobayashi, Tetrahedron
Lett., 1991, 32, 797.
3 M. N. Rao, A. E. Shinnar, L. A. Noecker, T. L. Chao, B. Feibush,
B. Snyder, I. Sharkansky, A. Sarkahian, X. Zhang, S. R. Jones,
W. A. Kinney and M. Zasloff, J. Nat. Prod., 2000, 63, 631.
4 G. F. Pauli, U. Matthiesen and F. R. Fronczek, Phytochemistry,
1999, 52, 1075.
20 J. March, Advanced Organic Chemistry: Reactions, Mechanisms and
Structure, Wiley, New York, 1992, p. 896; several examples of base-
catalyzed β-elimination of sulfates have been described (J. H.
Thomas and N. Tudball, Biochem. J., 1970, 119, 57P; J. H. Thomas,
K. S. Dogson and N. Tudball, Biochem. J., 1968, 110, 687; R.
Contestabile, T. Jenn, M. Akhtar, D. Gani and R. A. John,
Biochemistry, 2000, 39, 3091; H. Ueno, J. J. Likos and D. E. Metzler,
Biochemistry, 1982, 18, 4387; R. A. John and P. Fasella,
Biochemistry, 1969, 11, 4477; L. J. Fowler and R. A. John, Biochem.
J., 1972, 130, 569; A. G. Brown, D. F. Corbett, A. J. Eglington and
T. T. Howarth, Tetrahedron, 1983, 39, 2551). To the best of our
knowledge there are no reports of the gas phase cyclic mechanism
that we propose here for the elimination of bisulfate. However,
analogous oxy-Cope rearrangements of deprotonated diallyl ethers
have been studied by Bowie and co-workers: P. C. H. Eichinger and
J. H. Bowie, J. Chem. Soc., Perkin Trans. 2, 1987, 1499; P. C. H.
Eichinger, S. Dua and J. H. Bowie, Int. J. Mass Spectrom. Ion
Processes, 1994, 133, 1.
5 K. Hostettmann and A. Marston, Chemistry and Pharmacology
of Natural Products. Saponins, Cambridge University Press,
Cambridge, 1995.
6 (a) C. N. Falany, FASEB J., 1997, 11, 1; (b) R. M. Weinshilboum,
D. M. Otterness, I. A. Aksoy, T. C. Wood, C. Her and R. B.
Raftogianis, FASEB J., 1997, 11, 3; (c) C. N. Falany, FASEB J.,
1997, 11, 206; (d) K. G. Bowman and C. R. Bertozzi, Chem. Biol.,
1999, 6, R9; (e) J. W. Kehoe and C. R. Bertozzi, Chem. Biol., 2000, 7,
R57.
7 C. D. Klaassen and J. W. Boles. FASEB J., 1997, 11, 404.
8 (a) E. Baumann, Ber. Dtsch. Chem. Ges., 1876, 54; (b) W. B. Jakoby,
R. D. Sekura, E. S. Lyon, C. J. Marcus and J. L. Wang, in Enzymatic
Basis of Detoxification, ed. W. B. Jacoby, Academic Press,
New York, 1980, Vol II, p. 199; (c) G. J. Mulder and W. B. Jakoby, in
Conjugation Reactions in Drug Metabolism: An Integrated Approach,
ed. G. J. Mulder, Taylor and Francis, Philadelphia, 1990, p. 107.
9 (a) C. C. Lai, J. A. Miller, E. C. Miller and A. Liem, Carcinogenesis,
1985, 6, 1037; (b) H. Glatt, FASEB J., 1997, 11, 314; (c) A. E. Buhl,
D. J. Waldon, C. A. Baker and G. A. Johnson, J. Invest. Dermatol.,
1990, 95, 553.
10 K. G. Bowman, S. Hemmerich, S. Bhakta, M. S. Singer, A. Bistrup,
S. D. Rosen and C. R. Bertozzi, Chem. Biol., 1998, 5, 447.
11 J. McCormick, Y. Li, K. McCormick, H. I. Duynstee, A. K. van
Engen, G. A. van der Marel, B. Ganem, J. H. van Boon and
J. Meinwald, J. Am. Chem. Soc., 1999, 121, 5661.
12 (a) L. O. G. Weidolf, E. D. Lee and J. D. Henion, Biomed. Environ.
Mass Spectrom., 1988, 15, 283; (b) H. Zhang and J. Henion,
Anal. Chem., 1999, 71, 3955.
21 (a) J. Bredt, H. Thouet and J. Schmitz, Liebigs Ann. Chem., 1924,
437; (b) P. M. Warner, Chem. Rev., 1989, 89, 1067; (c) W. Maier and
P. v. R. Schleyer, J. Am. Chem. Soc., 1981, 103, 1891.
22 K. Chatman, T. Hollenbeck, L. Hagey, M. Vallee, R. Purdy,
F. Weiss and G. Siuzdak, Anal. Chem., 1999, 71, 2358.
23 S. J. Gaskell, Biomed. Environ. Mass Spectrom., 1988, 15, 99.
24 J. Yinon, L. D. Betowski and R. D. Voyksner, in Applications of
LC-MS in Environmental Chemistry, ed. D. Barceló, Elsevier,
Amsterdam, 1996, p. 187.
25 G. K. Poon, G. M. F. Bisset and P. Mistry, J. Am. Soc. Mass
Spectrom., 1993, 4, 588.
26 P. A. Wabnitz, J. H. Bowie and M. J. Tyler, Rapid Commun. Mass.
Spectrom., 1999, 13, 2498.
27 C. A. Grob and P. W. Schiess, Angew. Chem., Int. Ed. Engl., 1967, 6,
1.
28 (a) H. Taguchi, B. Paal and W. L. F. Armarego, J. Chem. Soc.,
Perkin Trans. 1, 1997, 3, 303; (b) A. Firouzi, F. Atef, A. G. Oertli,
G. D. Stucky and B. F. Chmelka, J. Am. Chem. Soc., 1997, 119, 3596.
29 L. Debrauwer, A. Paris, D. Rao, F. Fournier and J. C. Tabet,
Org. Mass Spectrom., 1992, 27, 709.
30 C. J. Pouchert, Aldrich Library of 13C and 1H FT NMR Spectra,
Aldrich Chemical Company, Milwaukee, 1993, vol. 3, 566C, 567A.
31 J. Karliner, H. Budzikiewicz and C. Djerassi, J. Org. Chem., 1966,
31, 710.
32 R. C. Cookson, D. P. G. Hamon and R. E. Parker, J. Chem. Soc.,
1962, 5014.
33 S. Futaki, T. Taike, T. Yagami, T. Ogawa, T. Akita and T. Kitagawa,
J. Chem. Soc., Perkin Trans. 1, 1990, 1739.
13 (a) K. A. Thomsson, N. G. Karlsson and G. C. Hansson,
J. Chromatogr., A, 1999, 854, 131; (b) A. Tjernberg, P. O. Edlund
and B. Noren, J. Chromatogr., B, 1998, 715, 395; (c) S. Ikegawa,
506
J. Chem. Soc., Perkin Trans. 2, 2001, 498–506