2426
B. A. Trofimov et al. / Tetrahedron Letters 53 (2012) 2424–2427
References and notes
P
P
N
Br
1. For recent selected examples, see: (a) Barton, B. E.; Rauchfuss, T. B. J. Am. Chem.
OH
B
P
O
Soc. 2010, 132, 14877–14885; (b) Liu, J.; Jacob, C.; Sheridan, K. J.; Al-Mosule, F.;
Heaton, B. T.; Iggo, J. A.; Matthews, M.; Pelletier, J.; Whyman, R.; Bickley, J. F.;
Steiner, A. Dalton Trans. 2010, 39, 7921–7935; (c) West, N. M.; Labinger, J. A.;
Bercaw, J. E. Organometallics 2011, 30, 2690–2700; (d) Antelo, J. M.; Adrio, L.;
Pereira, M. T.; Ortigueira, J. M.; Fernandez, A.; Vila, J. M. Eur. J. Inorg. Chem.
2011, 11069–11076.
- Br
N
N
2. For recent selected examples, see: (a) Tang, C.-M.; Zeng, Y.; Yang, X.-G.; Lei, Y.-
C.; Wang, G.-Y. J. Mol. Catal. A: Chem. 2009, 314, 15–20; (b) Kumar, P.; Kumar
Singh, A.; Sharma, S.; Shankar Pandey, D. J. Organomet. Chem. 2009, 694, 3643–
3652; (c) Muranaka, M.; Hyodo, I.; Okumura, W.; Oshiki, T. Catal. Today 2011,
164, 552–555.
O
P
P
N
P
P
O
N
3. For reviews, see: (a) Newkome, G. R. Chem. Rev. 1993, 93, 2067–2089; (b)
Zhang, Z. Z.; Cheng, H. Coord. Chem. Rev. 1996, 147, 1–39; (c) Espinet, P.;
Soulantica, K. Coord. Chem. Rev. 1999, 193–195, 499–566; (d) Sadimenko, A. P.
Adv. Heterocycl. Chem. 2011, 104, 391–475.
4. (a) Slagt, V. F.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. J. Am.
Chem. Soc. 2004, 126, 1526–1536; (b) Kleij, A. W.; Kuil, M.; Tooke, D. M.; Spek,
A. L.; Reek, J. N. H. Inorg. Chem. 2005, 44, 7696–7698.
2
Scheme 3. A possible mechanism for the formation of tris(2-pyridyl)phosphine
oxide (2) from 2-bromopyridine and elemental phosphorus.
5. For examples, see: (a) Gros, P.; Younes-Millot, C. B.; Fort, Y. Tetrahedron Lett.
2000, 41, 303–306; (b) Alcarazo, M.; Suarez, R. M.; Goddard, R.; Furstner, A.
Chem. Eur. J. 2010, 16, 9746–9749; (c) Kharat, A. N.; Bakhoda, A.; Hajiashrafi, T.;
Abbasi, A. Phosphorus, Sulfur Silicon Relat. Elem. 2010, 185, 2341–2347.
6. (a) Berners-Price, S. J.; Bowen, R. J.; Galettis, P.; Healy, P. C.; McKeage, M. J.
Coord. Chem. Rev. 1999, 185–186, 823–836; Roman Luque-Ortega, J.; Reuther,
P.; Rivas, L.; Dardonville, C. J. Med. Chem. 2010, 53, 1788–1798; (c) Kharat, A. N.;
Bakhoda, A.; Foroutannejad, S.; Foroutannejad, C. Z. Anorg. Allg. Chem. 2011,
637, 1–6.
7. Szczepura, L. F.; Witham, L. M.; Takeuchi, K. J. Coord. Chem. Rev. 1998, 174, 5–
32.
8. (a) Ackermann, M.; Berger, S. Tetrahedron 2005, 61, 6764–6771; (b) Bowen, R.
J.; Fernandes, M. A.; Gitari, P. W.; Layh, M. Phosphorus, Sulfur Silicon Relat. Elem.
2006, 181, 1403–1418; (c) Humphreys, A. S.; Filipovska, A.; Berners-Price, S. J.;
Koutsantonis, G. A.; Skelton, B. W.; White, A. H. Dalton Trans. 2007, 4943–4950;
(d) Lin, Y.-Y.; Tsai, S.-C.; Yu, S. J. J. Org. Chem. 2008, 73, 4920–4928.
9. For recent selected examples, see: (a) Saucedo Anaya, S. A.; Hagenbach, A.;
Abram, U. Polyhedron 2008, 27, 3587–3592; (b) Adeyemi, O. G.; Liu, L.-K. Inorg.
Chim. Acta 2009, 362, 477–482; (c) Woollard-Shore, J. G.; Holland, J. P.; Jones,
M. W.; Dilworth, J. R. Dalton Trans. 2010, 39, 1576–1585; (d) Bakhoda, A.; Safari,
N.; Amani, V.; Khavasi, H. R.; Gheidi, M. Polyhedron 2011, 30, 2950–2956.
10. (a) Drent, E.; Arnoldy, P.; Budzelaar, P. H. M. J. Organomet. Chem. 1994, 475, 57–
63; (b) Drent, E.; Arnoldy, P.; Budzelaar, P. H. M. J. Organomet. Chem. 1994, 475,
247–253.
Figure 1. Molecular structure of cis-[Pd(PPy3)2Cl2] CH2Cl2 (3). The dichloromethane
molecule has been omitted for clarity. Selected bond lengths (Å) and angles (°):
Pd1-–P1 2.2530(8), Pd1–P2 2.2539(8), Pd1–Cl1 2.3504(8), Pd1–Cl2 2.3564(8), P–C
1.828(3)–1.844(3), P1–Pd1–P2 96.27(3), Cl1–Pd1–Cl2 91.10(3).
PdP2 and PdCl2 planes being 17.8°. The values of the Pd–P (ca.
2.253 Å) and Pd–C (ca. 2.353 Å) bond lengths are similar to the lit-
erature examples for bis(phosphino)palladium dichloride com-
plexes.21 It should be noted that in complex 3 the intermolecular
11. Kurtev, K.; Ribola, D.; Jones, R. A.; Cole-Hamilton, D. J.; Wilkinson, G. J. Chem.
Soc., Dalton Trans. 1980, 1, 55–58.
12. Karam, A.; Tenia, R.; Martinez, M.; López-Linares, F.; Albano, C.; Diaz-Barrios,
A.; Sánchez, Y.; Catarí, E.; Casas, E.; Pekerar, S.; Albornoz, A. J. Mol. Catal. A:
Chem. 2007, 265, 127–132.
p–p interaction between the pyridine ring is absent (the shortest
intercentroid distance between aromatic rings is 4.263 Å) unlike
the cis-Pd(PPy2Ph)2Cl2 molecule, wherein the minimum intercent-
roid distance between two pyridine rings is 3.400 Å.21a
13. Kuo, C.-Y.; Fuh, Y.-S.; Shiue, J.-Y.; Yu, S. J.; Lee, G.-H.; Peng, S.-M. J. Organomet.
Chem. 1999, 588, 260–267.
14. Bowen, R. J.; Garner, A. C.; Berners-Price, S. J.; Jenkins, I. D.; Sue, R. E. J.
Organomet. Chem. 1998, 554, 181–184.
In conclusion, a novel one-pot organometallics-free synthesis of
tris(2-pyridyl)phosphine in yields of up to 62% from 2-bromopyri-
dine and elemental phosphorus (both red and white) in a super-
base KOH/DMSO (H2O) suspension has been elaborated. Thus,
tris(2-pyridyl)phosphine is now one of the most accessible tertiary
heteroaromatic phosphines and acquires a real chance of finding
diverse applications as a promising ligand, as a building block in
organic synthesis and as a precursor for drug design. This result
contributes to both organophosphorus and pyridine chemistry as
well as to aromatic nucleophilic substitution.
15. Kluwer, A. M.; Ahmad, I.; Reek, J. N. H. Tetrahedron Lett. 2007, 48, 2999–3001.
16. For reviews in this area, see: (a) Trofimov, B. A.; Rakhmatulina, T. N.; Gusarova,
N. K.; Malysheva, S. F. Russ. Chem. Rev. 1991, 60, 1360–1367; (b) Trofimov, B. A.;
Gusarova, N. K. Mendeleev Commun. 2009, 19, 295–302.
17. Craig 2-bromopyridine synthesis. In Comprehensive Organic Name Reactions and
Reagents; Wang, Z., Ed.; John Wiley & Sons: New York, 2010.
18. Procedure for the preparation of tris(2-pyridyl)phosphine (1) from 2-
bromopyridine and elemental phosphorus:
A mixture of 2-bromopyridine
(7.90 g, 50 mmol), red phosphorus (3.10 g, 100 mmol), powdered KOH
0.5H2O (10.00 g, 154 mmol), DMSO (50 mL), and H2O (2 mL) was stirred for
3 h at 100 °C under argon. The mixture was cooled to room temperature,
diluted with H2O (60 mL) and extracted with CHCl3 (3 Â 20 mL). The combined
extract was washed with H2O (3 Â 15 mL) and dried over K2CO3. The solvent
was removed under reduced pressure and the residue washed with cold EtOH
(1 Â 8 mL) and dried in vacuo (1 Torr) to give 2.74 g (62%) of pure phosphine 1
as a microcrystalline powder. Mp 115–116 °C (i-PrOH), Lit. 113 °C.14IR (KBr):
3039, 2961, 2900, 1572, 1558, 1450, 1424, 1413, 1283, 1276, 1147, 1085, 1045,
987, 960, 907, 896, 774, 765, 743, 721, 712, 618, 548, 513, 503, 496, 426, 407,
Acknowledgments
This work was supported by the Russian Foundation for Basic
Research (Grant No. 11-03-00286a) and the President of the Rus-
sian Federation (program for the support of leading scientific
schools, Grant NSh-3230.2010.3).
395 cmÀ1 1H NMR (400.13 MHz, CDCl3): d = 7.18–7.23 (m, 3H, H-5), 7.41 (d,
.
3JHH = 7.0 Hz, 3H, H-3), 7.58–7.64 (m, 3H, H-4), 8.72 (d, 3JHH = 3.70 Hz, 3H, H-6).
1
13C NMR (100.62 MHz, CDCl3): d = 122.5 (C-5), 128.9 (d, JCP = 19.3 Hz, C-2),
3
2
135.6 (d, JCP = 2.6 Hz, C-4), 150.1 (d, JCP = 19.3 Hz, C-3), 161.5 (C-6). 31P NMR
(161.98 MHz, CDCl3): d = À1.86. Anal. Calcd for C15H12N3P: C, 67.92; H, 4.56; N,
15.84; P, 11.68. Found: C, 67.88; H, 4.49; N, 15.80; P, 11.59. According to the
31P NMR data, the content of tris(2-pyridyl)phosphine oxide (2) in the reaction
mixture can reach 10 mol %. It should be noted, that extraction of the reaction
mixture with CHCl3 selectively gives only tris(2-pyridyl)phosphine (1). Tris(2-
pyridyl)phosphine oxide (2) remains completely in the aqueous layer
(according to 31P NMR data).
Supplementary data
Supplementary data (general experimental method, experimen-
tal details, and characterization data for the synthesized com-
pounds) associated with this article can be found, in the online
19. Kuimov, V. A.; Malysheva, S. F.; Gusarova, N. K.; Vakul’skaya, T. I.; Khutsishvili,
S. S.; Trofimov, B. A. Heteroat. Chem. 2011, 22, 198–203.