D. Cedeno, J. J. Bozell / Tetrahedron Letters 53 (2012) 2380–2383
2383
Furthermore, the success of 2 in these reactions mitigates
against binding of the hindered base, as such binding would likely
preclude addition of O2 by blocking the available coordination site.
These findings suggest that the bulky aliphatic bases used in this
study do not bind to the catalyst and thus their role must involve
other mechanistic pathways (Scheme 2).
Research Center funded by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences under Award Number DE-
SC0000997. We gratefully acknowledge UT professors Dr. Nicole
Labbé and Dr. Douglas G. Hayes for UV–vis instrumentation.
Supplementary data
Our proposed mechanism involves deprotonation of the sub-
strate by the sterically hindered base to form a more readily oxi-
dized phenolate anion.28 The resulting anionic Co intermediate is
protonated and subsequently decomposed to hydroperoxy radical
and III. The phenoxy radical undergoes conversion to MMBQ, form-
aldehyde, and Co(N-Me salpr)-OH as shown in Scheme 1.
Supplementary data (experimental procedures for oxidation of
substrates, UV–vis and 1H NMR spectra for Co complexes) associ-
ated with this article can be found, in the online version, at
Addition of hindered bases to the oxidations of other G models
such as isoeugenol, eugenol, vanillin, and vanillin acetal29 gave
only low yields (0–10%) of MMBQ. Currently the reason for this
behavior is not yet clear, but may be related to the release of form-
aldehyde from a benzyl-type substrate rather than the release of
other small molecules, for example, CO from vanillin (Scheme 1).
Ample and fairly recent EPR evidence suggests that phenoxy radi-
cals can also coordinate to cobalt–Schiff base complexes.30,31 Our
studies with 2 suggest that at least initially, coordination of the
substrate is not necessary for the reaction. Further investigation
into this alternative mechanism and computational evaluation of
the intermediate Co complexes is currently underway.
References and notes
1. Caldin, E. F.; Dagnall, S. P.; Mak, M. K. S.; Brooke, D. N. Faraday Discuss. 1982, 74,
215.
2. Bozell, J. J.; Hames, B. R.; Dimmel, D. R. J. Org. Chem. 1995, 60, 2398.
3. Kervinen, K.; Korpi, H.; Mesu, J. G.; Soulimani, F.; Repo, T.; Rieger, B.; Leskela,
M.; Weckhuysen, B. M. Eur. J. Inorg. Chem. 2005, 2591.
4. Zombeck, A.; Drago, R. S.; Corden, B. B.; Gaul, J. H. J. Am. Chem. Soc. 1981, 103,
7580.
5. Bunzel, M.; Ralph, J. J. Agric. Food Chem. 2006, 54, 8352.
6. Niederhoffer, E. C.; Timmons, J. H.; Martell, A. E. Chem. Rev. 1984, 84, 137.
7. Cozzi, P. G. Chem. Soc. Rev. 2004, 33, 410.
8. Jones, R. D.; Summerville, D. A.; Basolo, F. Chem. Rev. 1979, 79, 139.
9. Martell, A. E. Oxygen complexes and oxygen activation by transition metals;
Plenum: New York, 1988.
10. Chen, D.; Martell, A. E.; Sun, Y. Z. Inorg. Chem. 1989, 28, 2647.
11. Vogt, L. H.; Wirth, J. G.; Finkbein, H. L. J. Org. Chem. 1969, 34, 273.
12. van Dort, H. M.; Geursen, H. J. Recl. Trav. Chim. Pays-Bas 1967, 86, 520.
13. Tomaja, D. L.; Vogt, L. H.; Wirth, J. G. J. Org. Chem. 1970, 35, 2029.
14. Sheldon, R. A.; Kochi, J. K. Metal catalyzed oxidations of organic compounds;
Academic Press: New York, 1981.
15. These oxidations primarily lead to the formation of DMBQ from 3 and MMBQ
from 4. The other isolated product is unreacted starting material. During the
oxidation of 3 we also observed incomplete oxidation represented by the
formation of syringaldehyde (detected by 1H NMR) in 620% yield.
16. Harper, J. L.; Smith, R. A. J.; Bedford, J. J.; Leader, J. P. Tetrahedron 1997, 53, 8211.
17. Carter, M. J.; Rillema, D. P.; Basolo, F. J. Am. Chem. Soc. 1974, 96, 392.
18. Wu, L.-B.; Hu, Z.-Q.; Lai, G.-Q. Chin. J. Struct. Chem. 2006, 25, 567.
19. Kennedy, B. J.; Fallon, G. D.; Gatehouse, B.; Murray, K. S. Inorg. Chem. 1984, 23,
580.
Conclusions
The effect of a series of aromatic and sterically hindered ali-
phatic bases on the yield of oxidation of G and S lignin models in
the presence of catalytic amounts of cobalt–Schiff base complexes
is influenced by both electronic and steric effects. S models give a
higher yield of p-quinone with imidazole ligands of higher pKa at
high L:C ratios, reflecting the donor ability of the ligand. However,
at lower L:C ratios, steric effects emerge for imidazole ligands bear-
ing methyl groups adjacent to the ligating nitrogen. Addition of a
bulky aliphatic base increases the yield of p-quinone when vanillyl
alcohol (a G model) is used as the substrate in the presence of 1 or
2, but importantly, does not decrease the yield of quinone forma-
tion from S models. We propose a plausible mechanism in which
the sterically hindered base does not coordinate to the catalyst
but rather deprotonates the substrate in order to ease its oxidation.
Future work will be directed toward the applications of our oxida-
tion conditions to natural lignin and EPR identification of the inter-
mediates involved in the reaction.
20. Chen, D.; Martell, A. E. Inorg. Chem. 1987, 26, 1026.
21. Sundberg, R. J.; Martin, R. B. Chem. Rev. 1974, 74, 471.
22. Mulder, P.; Saastad, O. W.; Griller, D. J. Am. Chem. Soc. 1988, 110, 4090.
23. Howard, J. A.; Ingold, K. U. Can. J. Chem. 1963, 41, 2800.
24. Badamali, S. K.; Luque, R.; Clark, J. H.; Breeden, S. W. Catal. Commun. 2009, 10,
1010.
25. Cheng, C. P.; Hwang, Y. S.; Hwang, R. S. J. Chin. Chem. Soc. 1990, 37, 457.
26. Migita, K.; Iwaizumi, M.; Isobe, T. J. Am. Chem. Soc. 1975, 97, 4228.
27. Srivanavit, C.; Brown, D. G. J. Am. Chem. Soc. 1978, 100, 5777.
28. Rappoport, Z. The chemistry of phenols; Wiley: Hoboken, 2003. Vol. II.
29. Dodo, K.; Aoyama, A.; Noguchi-Yachide, T.; Makishima, M.; Miyachi, H.;
Hashimoto, Y. Bioorg. Med. Chem. 2008, 16, 4272.
30. Arora, H.; Philouze, C.; Jarjayes, O.; Thomas, F. Dalton Trans. 2010, 39, 10088.
31. Bolzacchini, E.; Canevali, C.; Morazzoni, F.; Orlandi, M.; Rindone, B.; Scotti, R. J.
Chem. Society-Dalton Trans. 1997, 4695.
Acknowledgments
This work was supported as part of the Center for Direct Cata-
lytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier