3714
J. Le Nôtre et al. / Tetrahedron Letters 51 (2010) 3712–3715
Scheme 2. Anhydride formation and insertion of palladium(0) in the first step of the two possible mechanisms.
kylamines as additives had a drastic effect on the stability of the
catalytic species avoiding olefin isomerisation during the reaction.
We showed that the less expensive acetic anhydride can be use as a
reactant for the decarbonylation–elimination reaction at relatively
low temperature, and that the reaction can be applied to the deox-
ygenation of fatty acids into unsaturated hydrocarbons. Moreover,
the side products of the reaction (carbon monoxide and acetic acid)
can be eventually recycled, which shows the advantages of this ap-
proach compared to standard deoxygenation where carbon dioxide
is produced. We are continuing to extend the scope of this reaction
towards the conversion of biomass into bulk chemicals.
Scheme 3. Decarbonylation–elimination reaction using acetic anhydride.
Acknowledgement
We are grateful to the NWO-ACTS-ASPECT program for financial
support.
References and notes
1. (a) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044; (b) Huber, G.
W.; Corma, A. Angew. Chem., Int. Ed. 2007, 46, 7184.
2. (a) Ma, F.; Hanna, M. H. Bioresour. Technol. 1999, 70, 1; (b) Xie, W.; Peng, H.;
Chen, L. Appl. Catal.,
A 2006, 300, 67; (c) Ramadhas, A. S.; Jayaraj, S.;
Muraleedharan, C. Fuel 2005, 84, 335.
Scheme 4. Decarbonylation–elimination reaction in acetonitrile.
3. (a) Maier, W.; Roth, W.; Thies, I.; van Ragué Schleyer, P. Chem. Ber. 1982, 115,
808; (b) Snåre, M.; Kubickova, I.; Mäki-Arvela, P.; Eränen, K.; Murzin, D. Yu. Ind.
Eng. Chem. Res. 2006, 45, 5708; (c) Kubickova, I.; Snåre, M.; Eränen, K.; Mäki-
Arvela, P.; Murzin, D. Yu. Catal. Today 2005, 106, 197.
We next focused our efforts on the application of the new cat-
alytic system to the transformation of fatty acids. Using the opti-
mum reaction conditions the transformation of stearic acid 7 was
performed (Scheme 5). Full conversion was obtained with 1 equiv
of triethylamine as an additive and the corresponding olefins 8 and
9 were isolated in 97% yield with a selectivity of 96% for 1-hepta-
decene 8. The reaction was repeated in acetonitrile and an inver-
sion of selectivity, albeit modest, was observed with a ratio 1-
heptadecene/2-heptadecene of 41:59.
ˇ
ˇ
4. (a) Laurent, E.; Delmon, B. Appl. Catal., A 1994, 109, 77; (b) Kubicka, D.; Šimácek,
ˇ
P.; Zilková, N. Top. Catal. 2009, 52, 161; (c) Liu, Y.; Sotelo-Boyás, R.; Murata, K.;
Minowa, T.; Sakanishi, K. Chem. Lett. 2009, 38, 552.
5. (a) Lestari, S.; Mäki-Arvela, P.; Simakova, I.; Beltramini, J.; Lu Max, G. Q.;
Murzin, D. Yu. Catal. Lett. 2009, 130, 48; (b) Mäki-Arvela, P.; Kubickova, I.;
Snåre, M.; Eränen, K.; Murzin, D. Yu. Energy Fuels 2007, 21, 30; (c) Mäki-Arvela,
P.; Snåre, M.; Eränen, K.; Myllyoja, J.; Murzin, D. Yu. Fuel 2008, 87, 3543.
6. Do, P. T.; Chiappero, M.; Lobban, L. L.; Resasco, D. E. Catal. Lett. 2009, 130, 9.
7. (a) Danuthai, T.; Jongpatiwut, S.; Rirksomboon, T.; Osuwan, S.; Resasco, D. E.
Appl. Catal., A 2009, 361, 99; (b) Scheibel, J. J.; Reilman, R. T. PCT Int. Appl.
WO2007136873, 2007; Chem. Abstr. 2008, 148, 35396.
In conclusion, we have developed a palladium-catalysed reac-
tion allowing the transformation of aliphatic carboxylic acids into
terminal alkenes in high yield and high selectivity. The use of trial-
8. (a) Fenton, D. M. U.S. Patent 3,530,198, 1970; Chem. Abstr. 1970, 73, 130601.;
(b) Foglia, T. A.; Barr, P. A. J. Am. Oil Chem. Soc. 1976, 53, 737; (c) Stern, R.;
Hillion, G. U.S. Patent 4,554,397, 1985; Chem. Abstr. 1985, 103, 70934.; (d)
Miller, J. A.; Nelson, J. A.; Byrne, M. P. J. Org. Chem. 1993, 58, 18; (e) Gooßen, L. J.;
Rodriguez, N. Chem. Commun. 2004, 724.
9. (a) Könst, P. M.; Franssen, M. C. R.; Scott, E. L.; Sanders, J. P. M. Green Chem.
2009, 11, 1646; (b) Lammens, T. M.; De Biase, D.; Franssen, M. C. R.; Scott, E. L.;
Sanders, J. P. M. Green Chem. 2009, 11, 1562.
10. Muzart, J. J. Mol. Catal. A 2009, 308, 15.
11. Vollmüller, F.; Mägerlein, W.; Klein, S.; Krause, J.; Beller, M. Adv. Synth. Catal.
2001, 343, 29.
12. Damez, C.; Estrine, B.; Bessmertnykh, A.; Bouquillon, S.; Hénin, F.; Muzart, J. J.
Mol. Catal. A 2006, 244, 93.
13. General procedure for the decarbonylation/elimination reaction of carboxylic acids
in the presence of trialkylamines: In a Schlenk tube under a nitrogen atmosphere
were introduced palladium(II) chloride (3 mol %), bis(2-diphenylphosphino-
phenyl)ether (DPE-Phos, 9 mol %) and carboxylic acid (1 equiv). Anhydrous
DMPU (4 mL) was then added followed by Ac2O (2 equiv) and the trialkylamine
(1 equiv or 9 mol %). The reaction mixture was heated at 110 °C for 18 h. After
completion of the reaction, Et2O (ca. 10 mL) was added and the organic layer
Scheme 5. Decarbonylation–elimination reaction of stearic acid (7).