J.F. Hull et al. / Inorganica Chimica Acta 363 (2010) 1243–1245
1245
3.2. Representative procedure for the conversion of aldehydes to
amides
3.7. Butyramide (Table 1, Entry 8)
(49%). 1H NMR (500 MHz, CDCl3): d 5.50 (2H, s), 2.18 (2H, t, J,
7.46 Hz), 1.64 (2H, m), 0.95 (3H, t, J, 7.37 Hz). 13C NMR
(100 MHz, CDCl3): d 175.9, 38.0, 19.1, 13.9.
To a flame-dried Schlenk tube equipped with a magnetic stirbar
were added oxime (0.164 mmol), hydroxylamine hydrochloride
(0.164 mmol, 11.3 mg), NaHCO3 (0.164 mmol, 13.6 mg) and cata-
lyst (4 mg, 1.64
lmol). After filling the tube with N2 using three
3.8. 4-(Trifluoromethoxy)benzamide (Table 2, Entry 7)
vacuum-N2 cycles, dry and degassed toluene or acetonitrile
(1 mL) was added with a syringe, and the mixture was refluxed
for the time indicated in the tables. After cooling, 1,3,5-trimethoxy-
(68% from the aldehyde). 1H NMR (400 MHz, DMSO-d6): d 8.08
(1H, s), 7.99 (2H, m), 7.51 (1H, s), 7.45 (2H, m). 13C NMR (100 MHz,
DMSO-d6): d 166.7, 150.3, 133.4, 129.8, 121.7, 120.6.
benzene (9 mg, 55 lmol) and 1 mL methanol were added to the
mixture. The contents were transferred to a round bottom flask,
and all solvent was removed under reduced pressure. The resulting
solid was dissolved in DMSO-d6, and filtered through Celite into an
NMR tube for analysis.
3.9. Toluamide (Table 2, Entry 8)
(35%). 1H NMR (400 MHz, CDCl3): d 7.69 (2H, d, J, 8.20 Hz), 7.23
(2H, m), 6.04 (2H, br s), 2.38 (3H, s). 13C NMR (400 MHz, CDCl3): d
169.5, 142.8, 130.7, 129.5, 127.6, 21.7.
3.3. Benzamide (Table 1, Entries 1–4)
(>99%). 1H NMR (500 MHz, CDCl3): d 7.79 (2H, m), 7.52 (1H, t, J,
7.4 Hz), 7.44 (2H, t, J, 7.6 Hz), 5.85 (2H, br s, NH2). 13C NMR
(100 MHz, CDCl3): d 169.8, 133.5, 132.21, 128.8, 121.53.
Acknowledgments
R.H.C. thanks the DOE (Gant Number DE-FGO2-84ER13297) for
funding, S.T.H. thanks Yale University for a STARS II Fellowship.
3.4. 4-Nitrobenzamide (Table 1, Entry 5)
References
(>99%). 1H NMR (500 MHz, DMSO-d6): d 8.29 (3H, m), 8.09 (2H,
d, J, 8.8 Hz), 7.72 (1H, NH). 13CNMR (100 MHz, DMSO-d6): d 166.2,
149.1, 139.9, 128.9, 123.4.
[1] M.G. Loudon, Organic Chemistry, Oxford University Press, New York, NY, 2002
(pp. 982–983).
[2] F.A. Carey, Organic Chemistry, McGraw-Hill, New York, NY, 2005 (p. 871).
[3] R.E. Gawly, Org. React. 35 (1988) 1.
[4] M.B. Smith, Journal of Advanced Organic Chemistry, 5th ed., Wiley, New York,
2001 (p. 1415).
3.5. Cinnamide (Table 1, Entry 6)
[5] L. Field, P. Barnett, S.H. Shumaker, W.S. Marshall, J. Am. Chem. Soc. 83 (1961)
1983.
(71%). 1H NMR (500 MHz, CDCl3): d 7.59 (1H, d, J, 15.7 Hz), 7.49
(2H, m), 7.36 (3H, m), 6.44 (1H, d, J, 15.7 Hz), 5.69 (2H, s). 13C NMR
(100 MHz, CDCl3): d 168.0, 142.8, 134.7, 130.2, 129.1, 128.2, 119.7.
[6] A.J. Leusink, T.G. Meerbeek, J.G. Noltes, Rec. Trav. Chim. (1976) 123.
[7] N.A. Owston, A.J. Parker, J.M. Williams, J. Org. Lett. 9 (2007) 73.
[8] S. Park, Y. Choi, H. Han, S.H. Yang, S. Chang, Chem. Commun. (2003) 1936.
[9] N.A. Owston, A.J. Parker, J.M. Williams, J. Org. Lett. 9 (2007) 3599.
[10] D. Gnanamgari, R.H. Crabtree, Organometallics 28 (2009) 922.
[11] R. Martinez, D.J. Ramon, M. Yus, Tetrahedron 62 (2006) 8982.
[12] R. Martinez, D.J. Ramon, M. Yus, Tetrahedron 62 (2006) 8988.
[13] M.H.S.A. Hamid, P.A. Slatford, J.M. Williams, J. Adv. Synth. Catal. 349 (2007)
1555.
3.6. 2-Furamide (Table 1, Entry 7)
(>99%). 1H NMR (500 MHz, CDCl3): d 7.45 (1H, m), 7.15 (1H, d, J,
3.50 Hz), 6.50 (1H, dd, J, 3.46 Hz, 1.73 Hz), 5.89 (2H, br s). 13CNMR
(100 MHz, CDCl3): d 160.2, 147.6, 144.6, 115.4, 112.5.
[14] I.P. Evans, E.A. Spencer, G. Wilkinson, J. Chem. Soc., Dalton (1973) 204.