10.1002/ejic.202000490
European Journal of Inorganic Chemistry
FULL PAPER
FT-IR, TGA, NMR. ATR/FT-IR spectra were collected on a Bruker
TENSOR 27 equipped with a simple reflexion ATR diamond plate of the
Harrick MPV2 series. The thermogravimetric analysis (TGA) was
performed on a TA Instruments SDTQ600 under air or nitrogen with a
heating rate of 5 °C/min. 1H and 13C NMR spectra were collected on 300
and 400 MHz Bruker Avance spectrometers at 298 K.
Armentano, Y. Journaux, F. Lloret, M. Julve, Coord. Chem. Rev. 2015,
303, 110–138.
[3]
F. R. Fortea-Pérez, M. Mon, J. Ferrando-Soria, M. Boronat, A. Leyva-
Pérez, A. Corma, J. M. Herrera, D. Osadchii, J. Gascon, D. Armentano,
E. Pardo, Nat. Mater. 2017, 16, 760–766.
[4]
[5]
M. Mon, R. Bruno, J. Ferrando-Soria, D. Armentano, E. Pardo, J. Mater.
Chem. A 2018, 6, 4912–4947.
Y. Journaux, J. Ferrando-Soria, E. Pardo, R. Ruiz-Garcia, M. Julve, F.
Lloret, J. Cano, Y. Li, L. Lisnard, P. Yu, H. Stumpf, C. L. M. Pereira, Eur.
J. Inorg. Chem. 2018, 2018, 228–247.
CD, UV-Vis spectra. Circular dichroism spectra were collected on a
JASCO J-815 spectropolarimeter at room temperature, in the solid state
using KBr pellets or in solution (MeCN:H2O). UV-Vis spectra were
collected on a Agilent Cary-5000 spectrometer, at room temperature, in
the solid state using KBr pellets or in solution (MeCN:H2O).
[6]
[7]
[8]
M. Viciano-Chumillas, M. Mon, J. Ferrando-Soria, A. Corma, A. Leyva-
Pérez, D. Armentano, E. Pardo, Acc. Chem. Res. 2020, 53, 520–531.
E. Pardo, R. Ruiz-Garcia, J. Cano, X. Ottenwaelder, R. Lescouëzec, Y.
Journaux, F. Lloret, Miguel. Julve, Dalton Trans. 2008, 2780–2805.
M.-C. Dul, E. Pardo, R. Lescouëzec, Y. Journaux, J. Ferrando-Soria, R.
Ruiz-Garcia, J. Cano, M. Julve, F. Lloret, D. Cangussu, C. L. M. Pereira,
H. O. Stumpf, J. Pasan, C. Ruiz-Perez, Coord. Chem. Rev. 2010, 254,
2281–2296.
Crystallography. Crystal data for 1 (C74H118.50Co6N9O39): dark blocks,
monoclinic, P21/c, a = 9.9479(3) Å, b = 28.8849(10) Å, c = 32.8203(10) Å,
β = 97.123(2), V = 9357.9(5) Å3, Z = 4, T = 200(2) K, ρ = 1.502 g cm-3,
F(000) = 4406, µ = 1.130 mm-1. Crystal data for 2 (C14H20CuN2O4): green
hexagons, trigonal, P32, a = 9.6625(2) Å, c = 13.9393(4) Å, V =
1127.07(6) Å3, Z = 3, T = 200(2) K, ρ = 1.520 g cm-3, F(000) = 537, µ =
1.470 mm-1. The data collections for 1 and 2 were carried out on a Bruker
Kappa-APEX II CCD diffractometer (MoKα, λ = 0.71073 Å). Crystals
were mounted on a cryoloop using Parabar oil and placed in the cold flow
produced with an Oxford Cryosystems device. Data collection strategies
were generated with the APEX2 suite of programs (BRUKER).[77] The
refinement of the unit cell parameters and data reduction were carried
out with SAINT (BRUKER),[77] and absorptions were corrected with
SADABS.[77,78] The structures were solved with SHELXT-14[79] and
refined with the SHELXL-2014/7 program[79] (WinGX or Olex 2 software
packages[80,81]). Data refinement for 1 gave (using 1237 parameters and
14 restraint) wR2 = 0.2039 (18383 unique reflections), R1 = 0.0898 [14569
reflections with I > 2σ(I)], and GOF = 1.186. A disorder model (with a
ratio of 0.9/0.1) was introduced for the Co2 and Co6 atoms as well as
some atoms in their coordination spheres to take into account the
residual density in these regions. However, this model is only partial.
Further disorder modelling leads unfortunately to either a diverging model
or an incomplete one, since the residual density is mostly observed for
the Co atoms. Data refinement for 2 gave (using 194 parameters and 1
restraint) wR2 = 0.0527 (4906 unique reflections), R1 = 0.0198 [4748
reflections with I > 2σ(I)], GOF = 1.060, and a Flack parameter of -
0.021(3). CCDC-1985070 and 1985071 contain the supplementary
crystallographic data for this article. These data can be obtained free of
charge from the Cambridge Crystallographic Data Centre via
[9]
M. Castellano, R. Ruiz-García, J. Cano, J. Ferrando-Soria, E. Pardo, F.
R. Fortea-Pérez, S.-E. Stiriba, M. Julve, F. Lloret, Acc. Chem. Res.
2015, 48, 510–520.
[10] M. Mon, J. Ferrando-Soria, T. Grancha, F. R. Fortea-Pérez, J. Gascon,
A. Leyva-Pérez, D. Armentano, E. Pardo, J. Am. Chem. Soc. 2016, 138,
7864–7867.
[11] M. Mon, J. Ferrando-Soria, M. Verdaguer, C. Train, C. Paillard, B. Dkhil,
C. Versace, R. Bruno, D. Armentano, E. Pardo, J. Am. Chem. Soc.
2017, 139, 8098–8101.
[12] M. Mon, R. Bruno, E. Tiburcio, P.-E. Casteran, J. Ferrando-Soria, D.
Armentano, E. Pardo, Chem. - Eur. J. 2018, 24, 17712–17718.
[13] M. Mon, R. Bruno, E. Tiburcio, A. Grau-Atienza, A. Sepúlveda-
Escribano, E. V. Ramos-Fernandez, A. Fuoco, E. Esposito, M.
Monteleone, J. C. Jansen, J. Cano, J. Ferrando-Soria, D. Armentano, E.
Pardo, Chem. Mater. 2019, 31, 5856–5866.
[14] E. Pardo, R. Ruiz-García, F. Lloret, J. Faus, M. Julve, Y. Journaux, M.
A. Novak, F. S. Delgado, C. Ruiz-Pérez, Chem. - Eur. J. 2007, 13,
2054–2066.
[15] J. Ferrando-Soria, T. Grancha, M. Julve, J. Cano, F. Lloret, Y. Journaux,
J. Pasán, C. Ruiz-Pérez, E. Pardo, Chem. Commun. 2012, 48, 3539–
3541.
[16] T. Grancha, M. Mon, F. Lloret, J. Ferrando-Soria, Y. Journaux, J.
Pasán, E. Pardo, Inorg. Chem. 2015, 54, 8890–8892.
[17] C. O. Paul-Roth, Comptes Rendus Chimie 2005, 8, 1232–1236.
[18] K. Yoneda, Y. Hori, M. Ohba, S. Kitagawa, Chem. Lett. 2008, 37, 64–
65.
[19] T. L. Oliveira, L. H. G. Kalinke, E. J. Mascarenhas, R. Castro, F. T.
Martins, J. R. Sabino, H. O. Stumpf, J. Ferrando, M. Julve, F. Lloret, D.
Cangussu, Polyhedron 2014, 81, 105–114.
Acknowledgments
[20] K. Rühlig, R. Mothes, A. Aliabadi, V. Kataev, B. Büchner, R. Buschbeck,
T. Rüffer, H. Lang, Dalton Trans. 2016, 45, 7960–7979.
[21] T. S. Fernandes, R. S. Vilela, A. K. Valdo, F. T. Martins, E. García-
España, M. Inclán, J. Cano, F. Lloret, M. Julve, H. O. Stumpf, D.
Cangussu, Inorg. Chem. 2016, 55, 2390–2401.
This work was supported by the Ministère de la Recherche et de
l’Enseignement Supérieur (MRES), the Centre National de la
Recherche Scientifique (CNRS) and the China Scholarship
Council (CSC) in the form of M. Ang Li’s PhD fellowship. The
authors would like to thank Dr Hani Amouri for the fruitful
discussions on chirality, and the staff of the low temperature
physical measurement MPBT technical platform at Sorbonne
Université.
[22] A. Conte-Daban, V. Borghesani, S. Sayen, E. Guillon, Y. Journaux, G.
Gontard, L. Lisnard, C. Hureau, Anal. Chem. 2017, 89, 2155–2162.
[23] T. S. Fernandes, W. D. C. Melo, L. H. G. Kalinke, R. Rabelo, A. K.
Valdo, C. C. da Silva, F. T. Martins, P. Amorós, F. Lloret, M. Julve, D.
Cangussu, Dalton Trans. 2018, 47, 11539–11553.
[24] L. Hou, L.-N. Ma, X.-Y. Li, Y.-Z. Li, W.-J. Shi, G. Liu, Y.-Y. Wang,
ChemPlusChem 2019, 84, 62–68.
Keywords: N,O ligands • chiral coordination polymer •
[25] T. T. da Cunha, V. M. M. Barbosa, W. X. C. Oliveira, C. B. Pinheiro, E.
F. Pedroso, W. C. Nunes, C. L. M. Pereira, Polyhedron 2019, 169,
102–113.
macrocycle • magnetic properties • oxamate
[26] J. Maciel, L. Kalinke, A. Valdo, F. Martins, R. Rabelo, N. Moliner, J.
Cano, M. Julve, F. Lloret, D. Cangussu, J. Braz. Chem. Soc. 2019, 30,
2413–2429.
[1]
[2]
T. Grancha, J. Ferrando-Soria, M. Castellano, M. Julve, J. Pasán, D.
Armentano, E. Pardo, Chem. Commun. 2014, 50, 7569–7585.
M. Castellano, R. Ruiz-García, J. Cano, J. Ferrando-Soria, E. Pardo, F.
R. Fortea-Pérez, S.-E. Stiriba, W. P. Barros, H. O. Stumpf, L.
Cañadillas-Delgado, J. Pasán, C. Ruiz-Pérez, G. de Munno, D.
This article is protected by copyright. All rights reserved.