3332
Letters to the Editor
cycloheptatriene and substituted benzenes,13,24 forming ͑sub-
stituted͒ benzyl radicals, and obtained values of nϷ2.
In their work on the decomposition of toluene into ben-
6
K. Holtzhauer, C. Cometta-Morini, and J. F. M. Oth, J. Phys. Org. Chem.
, 219 ͑1990͒.
G. Maier and S. Senger, Angew. Chem. Int. Ed. Engl. 33, 558 ͑1994͒.
J. D. Getty, M. J. Burmeister, S. G. Westre, and P. B. Kelly, J. Am. Chem.
Soc. 113, 801 ͑1991͒.
M. Yamaguchi, J. Mol. Struct. ͑Theochem͒ 365, 143 ͑1996͒.
P. Merlet, S. D. Peyerimhoff, R. J. Buenker, and S. Shih, J. Am. Chem.
Soc. 96, 959 ͑1974͒.
3
7
8
24
zyl and hydrogen Park et al. applied the principle of de-
2
7
tailed balance to their data, and showed that the vibrational
temperature of the energized educt molecule is similar to the
translational temperature of the hydrogen. Using the formula
from Ref. 24 a vibrational temperature Tvib of 4249 K is
calculated for allyl, and 3482 K for cyclopropyl. When
scaled frequencies are employed the Tvib come out about 200
K lower. Under the assumption that the principle of detailed
balance is valid for our system, the translational temperature
of the hydrogen atom of 4583 K agrees reasonably well with
the vibrational temperature expected for the allyl→allene re-
action. The difference of 500 K is probably also due to the
contributions of the reverse barrier. The agreement is less
satisfying for the cyclopropyl→cyclopropene reaction.
In conclusion, the statistical analysis of the data suggests
that the experimental observations are in better agreement
with allene formation as the principal hydrogen-loss channel,
rather than cyclopropene formation. However, at present, the
latter possibility cannot be ruled out completely. Experi-
ments on isotopically labeled precursors are currently under-
way, which may provide a definitive answer. It can be as-
sumed that, barring isotopic scrambling, allene formation
comes from hydrogen loss at the central carbon atom, while
cyclopropene formation corresponds to hydrogen loss at one
of the terminal carbon atoms.
9
0
1
1
1
P. Chen, S. D. Colson, W. A. Chupka, and J. A. Berson, J. Phys. Chem.
90, 2319 ͑1986͒.
12
R. Schmiedl, H. Dugan, W. Meier, and K. H. Welge, Z. Phys. A 304, 137
͑1982͒.
K. Tsukiyama and R. Bersohn, J. Chem. Phys. 86, 745 ͑1987͒.
J. L. Brum, S. Deshmukh, Z. Wang, and B. Koplitz, J. Chem. Phys. 98,
1
1
3
4
1178 ͑1993͒; Z. Wang, M. G. Mathews, and B. Koplitz, J. Phys. Chem.
99, 6913 ͑1995͒.
15
R. E. Continetti, D. R. Cyr, D. L. Osborn, D. J. Leahy, and D. M. Neu-
mark, J. Chem. Phys. 99, 2616 ͑1993͒; D. L. Osborn, D. J. Leahy, E. M.
Ross, and D. M. Neumark, Chem. Phys. Lett. 235, 484 ͑1995͒; D. L.
Osborn, H. Choi, D. H. Mordaunt, R. T. Bise, D. M. Neumark, and C.
McMichael Rohlfing, J. Chem. Phys. 106, 3049 ͑1997͒.
16
D. W. Kohn, H. Clauberg, and P. Chen, Rev. Sci. Instrum. 63, 4003
͑
1992͒.
17
H. Zacharias, H. Rottke, J. Danon, and K. H. Welge, Opt. Commun. 37,
15 ͑1981͒.
18
M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson,
M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgom-
ery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J.
B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challa-
combe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E.
S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S.
Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C.
Gonzalez, and J. A. Pople, GAUSSIAN 94 ͑Revision A.1͒, ͑Gaussian Inc.,
Pittsburgh, 1995͒.
R. Krishnan and J. A. Pople, Int. J. Quant. Chem. 14, 91 ͑1978͒.
T. E. Daubert and R. P. Danner, Physical and Thermodynamic Properties
of Pure Chemicals ͑Taylor and Francis, Washington, D.C., 1993͒.
S. Olivella, A. Sol e´ , and J. M. Bofill, J. Am. Chem. Soc. 112, 2160
1
2
9
0
We would like to thank Professor M. Quack and R. Ranz
for supplying us with several of their programs for statistical
data analysis and for useful discussions.
21
͑
1990͒.
2
2
2
3
1
W. Demtr o¨ der, Laserspektroskopie ͑Springer, Berlin, 1991͒, p. 46.
S. Satyapal, G. W. Johnston, R. Bersohn, and I. Oref, J. Chem. Phys. 93,
D. W. Minsek, J. A. Blush, and P. Chen, J. Phys. Chem. 96, 2025 ͑1992͒;
J. A. Blush, D. W. Minsek, and P. Chen, ibid. 96, 10150 ͑1992͒; D. W.
Minsek and P. Chen, ibid. 97, 13375 ͑1993͒.
T.-K. Ha, H. Baumann, and J. F. M. Oth, J. Chem. Phys. 85, 1438 ͑1986͒.
Th. Schultz and I. Fischer ͑in preparation͒.
P. Chen, Unimolecular and Bimolecular Reaction Dynamics, edited by C.
Y. Ng, T. Baer, and I. Powis ͑Wiley, New York, 1994͒.
CRC Handbook of Chemistry and Physics, edited by D. A. Lide ͑CRC,
Boca Raton, 1994͒.
6
398 ͑1990͒.
2
2
4
5
2
J. Park, R. Bersohn, and I. Oref, J. Chem. Phys. 93, 5700 ͑1990͒.
3
¨
B. Koplitz, Z. Xu, D. Baugh, S. Buelow, D. Hausler, J. Rice, H. Reisler,
C. X. W. Quian, M. Noble, and C. Wittig, Faraday Discuss. Chem. Soc.
82, 125 ͑1986͒.
M. Quack, Chem. Phys. 51, 353 ͑1980͒.
K. J. Laidler, Chemical Kinetics ͑Harper and Row, New York, 1987͒.
4
5
26
2
7
J. Chem. Phys., Vol. 107, No. 8, 22 August 1997
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
137.189.170.231 On: Sat, 20 Dec 2014 19:42:27