10.1002/chem.202003758
Chemistry - A European Journal
FULL PAPER
[3]
a) D. Lachkar, N. Denizot, G. Bernadat, K. Ahamada, M. A. Beniddir, V.
Dumontet, J.-F. Gallard, R. Guillot, K. Leblanc, E. O. N’nang, V. Turpin,
C. Kouklovsky, E. Poupon, L. Evanno, G. Vincent, Nat. Chem. 2017, 9,
793–798; b) A.-S. Marques, V. Coeffard, I. Chataigner, G. Vincent, X.
Moreau, Org. Lett. 2016, 18, 5296–5299; c) T. Tomakinian, R. Guillot, C.
Kouklovsky, G. Vincent, Chem. Commun. 2016, 52, 5443–5446; d) T.
Tomakinian, R. Guillot, C. Kouklovsky, G. Vincent, Angew. Chem. Int. Ed.
2014, 53, 11881–11885; e) N. Denizot, A. Pouilhès, M. Cucca, R. Beaud,
R. Guillot, C. Kouklovsky, G. Vincent, Org. Lett. 2014, 16, 5752–5755; f)
R. Beaud, R. Guillot, C. Kouklovsky, G. Vincent, Angew. Chem. Int. Ed.
2012, 51, 12546–12550.
[14] J. Sakamoto, Y. Umeda, K. Rakumitsu, M. Sumimoto, H. Ishikawa,
Angew. Chem. Int. Ed. 2020, 59, 13414-13422.
[15] Á. Patthy-Lukáts, Á. Kocsis, L. F. Szabó, B. Podányi, J. Nat. Prod. 1999,
62, 1492–1499.
[16] Selected examples: a) U. Pfitzner, M. H. Zenk, Planta Med. 1982, 46,
10–14; b) H.-B. Zou, H.-J. Zhu, L. Zhang, L.-Q. Yang, Y.-P. Yu, J.
Stöckigt, Chem. – Asian J. 2010, 5, 2400–2404; c) P. Bernhardt, A. R.
Usera, S. E. O’Connor, Tetrahedron Lett. 2010, 51, 4400–4402; d) D.
Pressnitz, E.-M. Fischereder, J. Pletz, C. Kofler, L. Hammerer, K. Hiebler,
H. Lechner, N. Richter, E. Eger, W. Kroutil, Angew. Chem. Int. Ed. 2018,
57, 10683–10687; e)
[4]
a) M. Jarret, A. Tap, C. Kouklovsky, E. Poupon, L. Evanno, G. Vincent,
Angew. Chem. Int. Ed. 2018, 57, 12294–12298; b) M. Jarret, V. Turpin,
A. Tap, J.-F. Gallard, C. Kouklovsky, E. Poupon, G. Vincent, L. Evanno,
Angew. Chem. Int. Ed. 2019, 58, 9861–9865; c) M. Jarret, A. Tap, V.
Turpin, N. Denizot, C. Kouklovsky, E. Poupon, L. Evanno, G. Vincent,
Eur. J. Org. Chem. under revision.
[17] For a review: a) N. Glinsky-Olivier, X. Guinchard, Synthesis 2017, 49,
2605–2620; for selected examples: b) R. S. Klausen, E. N. Jacobsen,
Org. Lett. 2009, 11, 887–890; c) I. P. Kerschgens, E. Claveau, M. J.
Wanner, S. Ingemann, J. H. van Maarseveen, H. Hiemstra, Chem.
Commun. 2012, 48, 12243–12245; d) Banik, S. M.; Levina, A.; Hyde, A.
M.; Jacobsen, E. N. Lewis Science 2017, 358, 761–764; e) L. Qi, H. Hou,
F. Ling, W. Zhong, Org. Biomol. Chem. 2018, 16, 566–574.
[5]
[6]
[7]
Y. Dou, C. Kouklovsky, V. Gandon, G. Vincent, Angew. Chem. Int. Ed.
2020, 59, 1527-1531.
[18] The following catalysts and conditions were evaluated without success:
For a review on total syntheses of indole alkaloids involving an oxidative
coupling: K. Nagaraju, D. Ma, Chem. Soc. Rev. 2018, 47, 8018–8029.
Selected methods for the synthesis of furo[3,2-b]indoline derivatives: a)
S. A. Bonderoff, A. Padwa, Org. Lett. 2013, 15, 4114–4117; b) Y.
Tokimizu, S. Oishi, N. Fujii, H. Ohno, Angew. Chem. Int. Ed. 2015, 54,
7862–7866; c) S. A. Morris, T. H. Nguyen, N. Zheng, Adv. Synth. Catal.
2015, 357, 2311–2316; d) E. Deruer, S. Canesi, Org. Biomol. Chem.
2017, 15, 3736–3741; e) Z. Xia, J. Hu, Y.-Q. Gao, Q. Yao, W. Xie, Chem.
Commun. 2017, 53, 7485–7488.
[8]
Total syntheses of phalarine which possess a related benzofuro[3,2-
b]indoline motif: a) C. Li, C. Chan, A. C. Heimann, S. J. Danishefsky,
Angew. Chem. Int. Ed. 2007, 46, 1444–1447; b) J. D. Trzupek, D. Lee,
B. M. Crowley, V. M. Marathias, S. J. Danishefsky, J. Am. Chem. Soc.
2010, 132, 8506–8512; c) H. Ding, D. Y.-K. Chen, Angew. Chem. Int. Ed.
2011, 50, 676–679; d) L. Li, K. Yuan, Q. Jia, Y. Jia, Angew. Chem. Int.
Ed. 2019, 58, 6074–6078; synthetic studies towards benzofuro[3,2-
b]indolines: e) K. Muñiz, J. Am. Chem. Soc. 2007, 129, 14542–14543; f)
S. S. K. Boominathan, J.-J. Wang, Chem. – Eur. J. 2015, 21, 17044–
17050; g) K. Douki, J. Shimokawa, M. Kitamura, Org. Biomol. Chem.
2019, 17, 1727–1730.
[9]
Total syntheses of lapidilectine B and grandilodine C which possess a
related furo[3,2-b]indolone motif: a) W. H. Pearson, Y. Mi, I. Y. Lee, P.
Stoy, J. Am. Chem. Soc. 2001, 123, 6724–6725; b) M. Nakajima, S. Arai,
A. Nishida, Angew. Chem. Int. Ed. 2016, 55, 3473–3476; c) Y. Gao, M.
Fan, Q. Geng, D. Ma, Chem. – Eur. J. 2018, 24, 6547–6550; d) F. M.
Miloserdov, M. S. Kirillova, M. E. Muratore, A. M. Echavarren, J. Am.
Chem. Soc. 2018, 140, 5393–5400; synthetic studies towards furo[3,2-
b]indolones: e) M. Ikeda, T. Uno, K.-I. Homma, K. Ohno, Y. Tamura,
Synth. Commun. 1980, 10, 437–449; f) T. Izumi, K. Kohei, S. Murakami,
J. Heterocycl. Chem. 1993, 30, 1133–1136; g) T. Kawasaki, K. Masuda,
Y. Baba, R. Terashima, K. Takada, M. Sakamoto, J. Chem. Soc. Perkin
1 1996, 729–733; k) V. Ramella, Z. He, C. G. Daniliuc, A. Studer, Eur. J.
Org. Chem. 2016, 2016, 2268–2273.
[10] Synthesis of hydroxyindolenine intermediates via oxidation of indoles in
the context of total synthesis: a) R. M. Williams, Tomasz. Glinka, Ewa.
Kwast, J. Am. Chem. Soc. 1988, 110, 5927–5929; b) S. Liu, J. S. Scotti,
S. A. Kozmin, J. Org. Chem. 2013, 78, 8645–8654; c) E. V. Mercado-
Marin, P. Garcia-Reynaga, S. Romminger, E. F. Pimenta, D. K. Romney,
M. W. Lodewyk, D. E. Williams, R. J. Andersen, S. J. Miller, D. J. Tantillo,
R. G. S. Berlinck, R. Sarpong, Nature 2014, 509, 318–324; d) Y. Sun, P.
Chen, D. Zhang, M. Baunach, C. Hertweck, A. Li, Angew. Chem. Int. Ed.
2014, 53, 9012–9016; e) C. Piemontesi, Q. Wang, J. Zhu, Angew. Chem.
Int. Ed. 2016, 55, 6556–6560; f) R. C. Godfrey, N. J. Green, G. S. Nichol,
A. L. Lawrence, Nat. Chem. 2020, 12, 615-619.
[11] L. F. Tietze, H. Meier, H. Nutt, Liebigs Ann. Chem. 1990, 253–260.
[12] K. Rakumitsu, J. Sakamoto, H. Ishikawa, Chem. – Eur. J. 2019, 25,
8996–9000.
[13] B.-C. Hong, N. S. Dange, P.-J. Yen, G.-H. Lee, J.-H. Liao, Org. Lett. 2012,
14, 5346–5349.
5
This article is protected by copyright. All rights reserved.