Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC03640J
COMMUNICATION
Journal Name
complexes and various biological species, and measured their [11] B. G. Wang, S. C. Yu, X. Y. Chai, T. J. Li, Q. Y. Wu, T. Wang,
fluorescent responses. As shown in Fig. S18, most of bio- Chem-Eur. J., 2016. 22. 5649-5656.
3-
molecules except HS- and PO4 cannot influence the emission [12] a) E. Baggaley, J. A. Weinstein, J. G. Williams, Coordin
3-
of the three complexes. Although HS- and PO4 could Chem. Rev., 2012, 256, 1762-1785.
substitute DTPP, the disassociated DTPP not emits two-photon [13] Q. Zhao, C. H. Huang, F. Y. Li, Chem. Soc. Rev., 2011, 40,
signal, thus the substitution would not interfere two-photon 2508-2524.
fluorescent imaging in desired targeting sub-cellular organelles. [14] F. Tessore, D. Roberto, R. Ugo, M. Pizzotti, S. Quici, M.
Moreover, widespread Cl- in bio-environment easily lead to Cavazzini, S. Bruni, F. De Angelis, Inorg. Chem., 2005, 44, 8967-
anion exchanges with Br- and I-, when the complexes existed as 8978.
monomer state in solution as shown in Fig. S19. However, the [15] S. Petoud, S. M. Cohen, J. C. G. Bünzli, K. N. Raymond, J.
three hydrophobic complexes cannot dissolve in bio- Am. Chem. Soc.,2003, 125, 13324-13325.
environmental aqueous solution with large amounts of Cl-, but [16] J, Zhang, Y. Liu, Y. Li, H. X. Zhao, X. H. Wan, Angew. Chem.
rather existed as nanoparticles. As shown in Fig. S20, the sizes Int. Ed. 2012, 51, 4598-4602.
of Cl, Br, and I complexes were ~30, 50, 1000 nm, respectively. [17] W. Sun, J. B. Yu, R. P. Deng, Y. Rong, B. Fujimoto, C. F. Wu,
Importantly, the formations of nanoparticles largely decreased H. J. Zhang, D. T. Chiu, Angew. Chem. Int. Ed. 2013, 52, 11294-
the rate of anion exchanges (Fig. S21), and the difference of 11297.
nanoparticles sizes induced the different cellular uptake [18] a) J. Tang, Y. B. Cai, J. Jing, J. L. Zhang, Chem. Sci., 2015, 6,
mechanisms.
2389-2397.
In summary, we have present three terpyridine deviations [19] D. Xie, J. Jing, Y. B. Cai, J. Tang, J. J. Chen, J. L. Zhang, Chem.
zinc-halide complexes with two-photon fluorescence, and Sci., 2014, 5, 2318-2327.
demonstrated how the complexes successfully rerouted and [20] J. Jing; J. J. Chen; Y. Hai, J. Zhan, P. Xu, J. L. Zhang, Chem.
specifically target different subcellular organelles in live cells Sci., 2012, 3, 3315-3320.
by tuning coordination anions (Cl-, Br- and I-). By hijacking [21] a) C.C. Liaw, W. Y. Liao, C. S. Chen, S. C. Jao, Y. C. Wu, C. N.
individual entry mechanism, complex DTPP-ZnCl2 targets Shen, S. H. Wu, Angew. Chem. Int. Ed. 2011, 50, 7885-7891.
nucleoli, DTPP-ZnBr2 binds to nuclear DNA and DTPP-ZnI2 [22] H. Dau, M. Haumann, Coordin Chem. Rev., 2008, 252, 273-
shows cytosolic membranous compartments uptake. Our 295.
results introduced a concept that could have significant [23] P. F. Wang, Z. R. Hong, Z. Y. Xie, S. W. Tong, O. Y. Wong, C.
implications and potentials in utilizing such complexes as bio- S. Lee, N. B. Wong, L. S. Hung, S. T. Lee, Chem. Commun., 2003
,
molecular transporter.
14, 1664-1665.
This work was supported by a grant for the National Natural
Science Foundation of China (21602003, 51372003, 21271004,
51432001, and 51271003, 21501001), Anhui University Doctor
Startup Fund (J01001962). The work of molecular modeling
calculations on Discovery Studio (Dassault Systemes BIOVIA,
Discovery Studio Modeling Environment, Release 4.5, San
Diego: Dassault Systemes, 2015) was contributed by Professor
Aidong Wang from Huangshan University, China.
[24] a) S.J. Stohs, D. Bagchi, Free Radical Bio. Med., 1995, 18,
321-336.
[25] K. P. Carter, A. M. Young, A. E. Palmer, Chem. Rev., 2014
,
114, 4564-4601.
[26] a) J. Tang, J. J. Chen, J. Jing, J. Z. Chen, H. Lv, Y. Yu, P. Xu, J.
L. Zhang, Chem. Sci., 2014, 5, 558-566.
[27] J. P. Holland, F. I. Aigbirhio, H. M. Betts, P. D. Bonnitcha, P.
Burke, M. Christlieb, G. C. Churchill, A. R. Cowley, J. R. Dilworth,
P. S. Donnelly, Inorg. Chem. 2007, 46, 465-485.
[28] Y. You, E. Tomat, K. Hwang, T. Atanasijevic, W. Nam, A. P.
Jasanoff, S. J.Lippard, Chem. Comm. 2010, 46, 4139-4141.
[29] S. Bhowmik, B. N. Ghosh, V. Marjomäki, K. Rissanen, J. Am.
Chem. Soc., 2014, 136, 5543-5546.
Notes and references
[1] H. F. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D.
Baltimore, J. Darnell, Molecular cell biology, Citeseer, Vol. 4.
[2] W. Denk, J. H. Strickler, W.W. Webb, Science, 1990, 248,
73-76.
[30] G. Bort, T. Gallavardin, D. Ogden, P. I. Dalko, Angew. Chem.
Int. Edit., 2013, 52, 4526-4537.
[3] W. R. Zipfel, R. W. Williams, W. W. Webb, Nat. Biotechnol.,
2003, 21, 1369-1377.
[31] X. H. Tian, Q. Zhang, M. Z. Zhang, K. Uvdal. Q. Wang, J. Y.
Chen, W. Du, B. Huang, J. Y. Wu, Y. P. Tian, Chem. Sci., 2017, 8,
142-149.
[4] R. W. Williams, W. R. Zipfel, W. W. Webb, Curr. Opin. Chem.
Boil., 2001, 5, 603-608.
[5] F. Helmchen. W. Denk, Nat. Methods., 2005, 2, 932-940
[6] H. B. Kim, B. R. Cho, Chem. Rev. 2015, 115, 5014-5055.
[7] M. P. Murphy, R. A. J. Smith. Annu. Rev. Pharmacol. Toxicol.,
2007, 47, 629-656.
[32] H. K. Ziegler and E. R. Unanue, Proc. Natl. Acad. Sci. U. S.
A., 1982, 79, 175–178.
[33] C. A. Puckett and J. K. Barton, Biochemistry, 2008, 47,
11711–11716.
[8] L. F. Yousif, K. M. Stewart, S. O. Kelley, ChemBioChem, 2009
,
10, 1939-1950.
[9] a) Q. Q. Wan, S. M. Chen, W. Shi, L. H. Li, H. M. Ma, Angew.
Chem. Int. Edit., 2014, 53, 10916-10920.
[10] M. Gao, Q. L. Hu, G. X. Feng, B. Z. Tang, B. Liu, J. Mater.
Chem. B, 2014, 2, 3438-3442.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins