Inorganic Chemistry
Article
Manganese(II) Complexes of Tetradentate 4N Ligands with
Diazapane Backbones for the Catalytic Olefin Epoxidation: Effect of
Nucleophilicity of Peroxo Complexes on Reactivity. RSC Adv. 2014, 4,
12000.
(15) (a) Kojima, T.; Nakayama, K.; Sakaguchi, M.; Ogura, T.;
Ohkubo, K.; Fukuzumi, S. Photochemical Activation of Ruthenium-
(II)-Pyridylamine Complexes Having a Pyridine-N-Oxide Pendant
toward Oxygenation of Organic Substrates. J. Am. Chem. Soc. 2011,
133, 17901. (b) Hirai, Y.; Kojima, T.; Mizutani, Y.; Shiota, Y.;
Yoshizawa, K.; Fukuzumi, S. Ruthenium-Catalyzed Selective and
Efficient Oxygenation of Hydrocarbons with Water as an Oxygen
Source. Angew. Chem., Int. Ed. 2008, 47, 5772.
(16) (a) Kojima, T.; Matsuda, Y. Catalytic Hydrocarbon Oxygenation
by a Dinuclear Ruthenium(II) Complex with Molecular Oxygen.
Chem. Lett. 1999, 28, 81. (b) Ohzu, S.; Ishizuka, T.; Hirai, Y.; Jiang, H.;
Sakaguchi, M.; Ogura, T.; Fukuzumi, S.; Kojima, T. Mechanistic
Insight into Catalytic Oxidations of Organic Compounds by
Ruthenium(IV)-Oxo Complexes with Pyridylamine Ligands. Chem.
Sci. 2012, 3, 3421.
(17) (a) Qi, Y.; Luan, Y.; Yu, J.; Peng, X.; Wang, G. Nanoscaled
Copper Metal-Organic Framework (MOF) Based on Carboxylate
Ligands as an Efficient Heterogeneous Catalyst for Aerobic
Epoxidation of Olefins and Oxidation of Benzylic and Allylic Alcohols.
Chem. - Eur. J. 2015, 21, 1589. (b) Wang, J.; Yang, M.; Dong, W.; Jin,
Z.; Tang, J.; Fan, S.; Lu, Y.; Wang, G. Co(II) Complexes Loaded into
Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for
Aerobic Epoxidation of Olefins. Catal. Sci. Technol. 2016, 6, 161.
(18) Cao, Y.; Yu, H.; Peng, F.; Wang, H. Selective Allylic Oxidation
of Cyclohexene Catalyzed by Nitrogen-Doped Carbon Nanotubes.
ACS Catal. 2014, 4, 1617.
(19) (a) Zou, G.; Jing, D.; Zhong, W.; Zhao, F.; Mao, L.; Xu, Q.;
Xiao, J.; Yin, D. A Novel Route for Preparation of Mn-Containing
Hollow Framework TS-1, and Its Selective Allylic Oxidation of
Cyclohexene. RSC Adv. 2016, 6, 3729. (b) Boudjema, S.; Vispe, E.;
Choukchou-Braham, A.; Mayoral, J. A.; Bachir, R.; Fraile, J. M.
Preparation and Characterization of Activated Montmorillonite Clay
Supported 11-Molybdo-Vanado-Phosphoric Acid for Cyclohexene
Oxidation. RSC Adv. 2015, 5, 6853.
(20) (a) Horwitz, C. P.; Ghosh, A. Carnegie Mellon University,
(b) Collins, T. J.; Powell, R. D.; Slebodnick, C.; Uffelman, E. S. Stable
Highly Oxidizing Cobalt Complexes of Macrocyclic Ligands. J. Am.
Chem. Soc. 1991, 113, 8419.
Technology (MEXT), and a SENTAN project from the Japan
Science and Technology Agency (JST) to S.F.
REFERENCES
■
(1) (a) Weidmann, V.; Maison, W. Allylic Oxidations of Olefins to
Enones. Synthesis 2013, 45, 2201. (b) Roduner, E.; Kaim, W.; Sarkar,
B.; Urlacher, V. B.; Pleiss, J.; Glaser, R.; Einicke, W.-D.; Sprenger, G.
̈
A.; Beifuß, U.; Klemm, E.; Liebner, C.; Hieronymus, H.; Hsu, S.-F.;
Plietker, B.; Laschat, S. Selective Catalytic Oxidation of C-H Bonds
with Molecular Oxygen. ChemCatChem 2013, 5, 82.
(2) Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.; Chen, K.; Eastgate,
M. D.; Baran, P. S. Scalable and Sustainable Electrochemical Allylic C-
H Oxidation. Nature 2016, 533, 77.
(3) (a) Nakamura, A.; Nakada, M. Allylic Oxidations in Natural
Product Synthesis. Synthesis 2013, 45, 1421. (b) Garcia-Cabeza, A. L.;
Moreno-Dorado, F. J.; Ortega, M. J.; Guerra, F. M. Copper-Catalyzed
Oxidation of Alkenes and Heterocycles. Synthesis 2016, 48, 2323.
(4) (a) Whitmore, F. C.; Pedlow, G. W., Jr. Δ2-Cyclohexenone and
Related Substances. J. Am. Chem. Soc. 1941, 63, 758. (b) Cainelli, G.;
Cardille, G. Chromium Oxidations in Organic Chemistry; Springer
Verlag: Berlin, 1984.
(5) (a) Jiang, D.; Mallat, T.; Meier, D. M.; Urakawa, A.; Baiker, A.
Copper Metal-Organic Framework: Structure and Activity in the
Allylic Oxidation of Cyclohexene with Molecular Oxygen. J. Catal.
2010, 270, 26. (b) Dali, A.; Rekkab-Hammoumraoui, I.; Choukchou-
Braham, A.; Bachir, R. Allylic Oxidation of Cyclohexene over
Ruthenium-Doped Titanium-Pillared Clay. RSC Adv. 2015, 5, 29167.
(6) Leus, K.; Vanhaelewyn, G.; Bogaerts, T.; Liu, Y.-Y.; Esquivel, D.;
Callens, F.; Marin, G. B.; van Speybroeck, V.; Vrielinck, H.; van der
Voort, P. Ti-Functionalized NH2-MIL-47: An Effective and Stable
Epoxidation Catalyst. Catal. Today 2013, 208, 97.
(7) Tuci, G.; Giambastiani, G.; Kwon, S.; Stair, P. C.; Snurr, R. Q.;
Rossin, A. Chiral Co(II) Metal-Organic Framework in the
Heterogeneous Catalytic Oxidation of Alkenes under Aerobic and
Anaerobic Conditions. ACS Catal. 2014, 4, 1032.
́ ́
(8) Ruano, D.; Díaz-García, M.; Alfayate, A.; Sanchez-Sanchez, M.
Nanocyrstalline M-MOF-74 as Heterogeneous Catalysts in the
Oxidation of Cyclohexene: Correlation of the Activity and Redox
Potential. ChemCatChem 2015, 7, 674.
(9) Xu, L.; Huang, D.-D.; Li, C.-G.; Ji, X.; Jin, S.; Feng, Z.; Xia, F.; Li,
X.; Fan, F.; Li, C.; Wu, P. Construction of Unique Six-Coordinated
Titanium Species with an Organic Amine Ligand in Titanosilicate and
their Unprecedented High Efficiency for Alkene Epoxidation. Chem.
Commun. 2015, 51, 9010.
(10) (a) Fukuzumi, S.; Kishi, T.; Kotani, H.; Lee, Y.-M.; Nam, W.
Highly Efficient Photocatalytic Oxygenation Reactions Using Water as
an Oxygen Source. Nat. Chem. 2011, 3, 38. (b) Fukuzumi, S.; Mizuno,
T.; Ojiri, T. Catalytic Electron-Transfer Oxygenation of Substrates
with Water as an Oxygen Source Using Manganese Porphyrins. Chem.
- Eur. J. 2012, 18, 15794.
(11) (a) Chen, G.; Chen, L.; Ma, L.; Kwong, H.-K.; Lau, T.-C.
Photocatalytic Oxidation of Alkenes and Alcohols in Water by a
Manganese(V) Nitrido Complex. Chem. Commun. 2016, 52, 9271.
(b) Kwong, H.-K.; Lo, P.-K.; Lau, K.-C.; Lau, T.-C. Epoxidation of
Alkenes and Oxidation of Alcohols with Hydrogen Peroxide Catalyzed
by a Manganese(V) Nitrido Complex. Chem. Commun. 2011, 47, 4273.
(12) Li, F.; Yu, M.; Jiang, Y.; Huang, F.; Li, Y.; Zhang, B.; Sun, L.
Chemical and Photochemical Oxidation of Organic Substrates by
Ruthenium Aqua Complexes with Water as an Oxygen Source. Chem.
Commun. 2011, 47, 8949.
(21) Kwon, E.; Cho, K.-B.; Hong, S.; Nam, W. Mechanistic Insight
into the Hydroxylation of Alkanes by a Nonheme Iron(V)-Oxo
Complex. Chem. Commun. 2014, 50, 5572.
(22) Ghosh, A.; Tiago de Oliveira, F.; Yano, T.; Nishioka, T.; Beach,
E. S.; Kinoshita, I.; Munck, E.; Ryabov, A. D.; Horwitz, C. P.; Collins,
̈
T. J. Catalytically Active μ-Oxodiiron(IV) Oxidants from Iron(III) and
Dioxygen. J. Am. Chem. Soc. 2005, 127, 2505.
(23) (a) Rohde, J.-U.; In, J.-H.; Lim, M. H.; Brennessel, W. W.;
Bukowski, M. R.; Stubna, A.; Munck, E.; Nam, W.; Que, L., Jr.
̈
Crystallographic and Spectroscopic Characterization of a Nonheme
Fe(IV)O Complex. Science 2003, 299, 1037. (b) Hong, S.; Lee, Y.-
M.; Shin, W.; Fukuzumi, S.; Nam, W. Dioxygen Activation by
Mononuclear Nonheme Iron(II) Complexes Generates Iron-Oxygen
Intermediates in the Presence of an NADH Analogue and Proton. J.
Am. Chem. Soc. 2009, 131, 13910. (c) Lee, Y.-M.; Hong, S.; Morimoto,
Y.; Shin, W.; Fukuzumi, S.; Nam, W. Dioxygen Activation by a Non-
Heme Iron(II) Complex: Formation of an Iron(IV)-Oxo Complex via
C-H Activation by a Putative Iron(III)-Superoxo Species. J. Am. Chem.
Soc. 2010, 132, 10668.
(13) Iali, W.; Lanoe, P.-H.; Torelli, S.; Jouvenot, D.; Loiseau, F.;
́
Lebrun, C.; Hamelin, O.; Menage, S. A Ruthenium(II)-Copper(II)
(24) (a) Lubben, M.; Meetsma, A.; Wilkinson, E. C.; Ferringa, B.;
Que, L., Jr. Nonheme Iron Centers in Oxygen Activation: Character-
ization of an Iron(III) Hydroperoxide Intermediate. Angew. Chem., Int.
Ed. Engl. 1995, 34, 1512. (b) Lee, Y.-M.; Kotani, H.; Suenobu, T.;
Nam, W.; Fukuzumi, S. Fundamental Electron-Transfer Properties of
Non-Heme Oxoiron(IV) Complexes. J. Am. Chem. Soc. 2008, 130,
434.
Dyad for the Photocatalytic Oxygenation of Organic Substrates
Mediated by Dioxygen Activation. Angew. Chem., Int. Ed. 2015, 54,
8415.
(14) (a) Sankaralingam, M.; Palaniandavar, M. Tuning the Olefin
Epoxidation by Manganese(III) Complexes of Bisphenolate Ligands:
Effect of Lewis Basicity of Ligands on Reactivity. Dalton Trans. 2014,
43, 538. (b) Saravanan, N.; Sankaralingam, M.; Palaniandavar, M.
H
Inorg. Chem. XXXX, XXX, XXX−XXX