Angewandte Chemie International Edition
10.1002/anie.201805535
COMMUNICATION
4
3
3
2
2
1
1
00
50
00
50
00
50
00
[
4] a) J. H. Kang, D. Xie, S. I. Zone, S. Smeets, L. B. McCusker, M. E. Davis,
Chem. Mater. 2016, 28, 6250-6259; b) J. L. Paillaud, B. Harbuzaru, J.
Patarin, N. Bats, Science 2004, 304, 990-992.
[
5]
a) H. Xu, J.-G. Jiang, B. T. Yang, L. Zhang, M. Y. He, P. Wu, Angew.
Chem. Int. Ed. 2014, 53, 1355-1359; b) L. Burel, N. Kasian, A. Tuel,
Angew. Chem. Int. Ed. 2014, 53, 1360-1363; c) F. F. Gao, M. Jaber, K.
Bozhilov, A. Vicente, C. Fernandez, V. Valtchev, J. Am. Chem. Soc.
2009, 131, 16580-16586; d) M. El-Roz, L. Lakiss, A. Vicente, K. N.
Bozhilov, F. Thibault-Starzyk, V. Valtchev, Chem. Sci. 2014, 5, 68-80;
e) M. V. Shamzhy, P. Eliasova, D. Vitvarova, M. V. Opanasenko, D. S.
Firth, R. E. Morris, Chem. Eur. J. 2016, 22, 17377-17386.
5
0
0
a
[6]
[7]
a) L. Xu, P. Wu, New J. Chem. 2016, 40, 3968-3981; b) W. J. Roth, P.
Nachtigall, R. E. Morris, J. Cejka, Chem. Rev. 2014, 114, 4807-4837.
S. Maheshwari, E. Jordan, S. Kumar, F. S. Bates, R. L. Penn, D. F.
Shantz, M. Tsapatsis, J. Am. Chem. Soc. 2008, 130, 1507-1516.
a) A. Corma, V. Fornes, S. B. Pergher, Th. L. M. Maesen, J. G. Buglass,
Nature 1998, 396, 353-356; b) P. Wu, D. Nuntasri, J. Ruan, Y. Liu, M.
He, W. Fan, O. Terasaki, T. Tatsumi, J. Phys. Chem. B 2004, 108,
-1
S-3
U-9
TS
Ti-FER
Ti-Bet
Ti-MOR
Ti-MWW
Ti-ECN
Ti-IEZ-PL
-
1
Figure 3. The turnover number (TON in mol (mol-Ti) ) for the epoxidation of
cyclohexene with hydrogen peroxide over various titanosilicates. Reaction
conditions: see Table S6.
[
8]
19126-19131; c) I. Ogino, M. M. Nigra, S.-J. Hwang, J.-M. Ha, T. Rea,
S. I. Zones, A. Katz, J. Am. Chem. Soc. 2011, 133, 3288-3291.
In conclusion, a novel extra-large pore zeolite ECNU-9 was
synthesized by LEGO-inspired interlayer expansion of layered
PLS-3 silicate with S4R-shaped silane molecules which linked
the neighboring layers, forming new structural units and
constructing intersecting 14*12-R pores. With open pore system
and less diffusion constrains, Ti-incorporated ECNU-9 showed
superior catalytic performance for bulky substrates. This LEGO-
inspired method is potentially expanded to other layered
precursors for developing novel zeolitic catalysts.
[
[
9]
a) K. Na, M. Choi, W. Park, Y. Sakamoto, O. Terasaki, R. Ryoo, J. Am.
Chem. Soc. 2010, 132, 4169-4177; b) Y. J. He, G. S. Nivarthy, F. Eder,
K. Seshan, J. A. Lercher, Micropor. Mesopor. Mater. 1998, 25, 207-224.
10] a) P. Wu, J. Ruan, L. Wang, L. Wu, Y. Wang, Y. Liu, W. Fan, M. He, O.
Terasaki, T. Tatsumi, J. Am. Chem. Soc. 2008, 130, 8178-8187; b) L.
Wang, Y. Wang, Y. Liu, H. Wu, M. He, P. Wu, J. Mater. Chem. 2009,
19, 8594-8602; c) H. Xu, B.T. Yang, J.-G. Jiang, L. Jia, M. He, P. Wu,
Micropor. Mesopor. Mater. 2013, 169, 88-96; d) J.-G. Jiang, L. Jia, B.T.
Yang, H. Xu, P. Wu, Chem. Mater. 2013, 25, 4710-4718; e) H. Gies, U.
Muller, B. Yilmaz, M. Feyen, T. Tatsumi, H. Imai, H. Zhang, B. Xie, F.-
S. Xiao, X. Bao, W. Zhang, T. De Baerdemaeker, D. De Vos, Chem.
Mater. 2012, 24, 1536-1545; f) H. Gies, U. Muller, B. Yilmaz, T. Tatsumi,
Experimental Section
a) A. Corma, U. Diaz, T. Garcia, G. Sastre, A. Velty, J. Am. Chem. Soc.
The layered silicate PLS-3 was synthesized through
conversion of protonated kanemite using TEAOH as the structure-
directing agent (SDA).16 Then, ECNU-8 sub-zeolite was obtained by
a solid-state
[11]
2
010, 132, 15011-15021; b) H. Xu, L. Fu, J.-G. Jiang, M. He, P. Wu,
treating PLS-3 zeolite in HCl/Ethanol solution at 443 K for 40 min. By
immersing ECNU-8 zeolite in TEMP solution for 20 h, an analogy of
PREFER was prepared and named as ECNU-9(P). Finally, ECNU-9
zeolite was synthesized by the structural expansion of ECNU-9(P) with
TMCS silane in HCl/Ethanol. For experimental details, please see
supporting information.
[
[
13] a) B. T. Yang, P. Wu, Chin. Chem. Lett. 2014, 25, 1511-1514; b) B.T.
Yang, J.-G. Jiang, H. Xu, P. Ji, P. Wu, Micropor. Mesopor. Mater. 2015,
203, 54-62.
[
[
[
14] L. Schreyeck, P. Caullet, J. C. Mougenel, J. L. Guth, B. Marler, Micropor.
Mater. 1996, 6, 259-271.
15]
T. Ikeda, S. Kayamori, F. Mizukami, J. Mater. Chem. 2009, 19, 5518-
Acknowledgements
5525.
16]
a) P. Wu, T. Tatsumi, Chem. Commun. 2002, 10, 1026-1027; b) L. Xu,
X. Ji, J.-G. Jiang, H. Lu, S. Che, P. Wu, Chem. Mater. 2015, 27, 7852-
The authors gratefully acknowledge the financial supports from
the NSFC of China (21533002, 21603075) and China Ministry of
Science and Technology (2016YFA0202804).
7
860; c) L. Xu, X. Ji, S. Li, Z. Zhou, X. Du, J. Sun, F. Deng, S. Che, P.
Wu, Chem. Mater. 2016, 28, 4512-4521.
17] a) T. Ikeda, S. Kayamori, Y. Oumi, F. Mizukami, J. Phys. Chem. C 2010,
14, 3466-3476; b) B.T. Yang, H. Wu, P. Wu, J. Phys. Chem. C 2014,
[
1
Keywords: layered zeolite • LEGO-inspired • extra-large pore •
118, 24662-24669; c) B.T. Yang, J.-G. Jiang, K. Zhang, P. Wu, Chem.
Mater. 2016, 28, 5295-5303.
interlayer expansion • titanosilicate
[
[
18] J. Joo, T. Hyeon, J. Hyeon-Lee, Chem. Commun. 2000, 16, 1487-1488.
19] Q. M. Wu, X. Wang, G. D. Qi, Q. Guo, S. X. Pan, X. J. Meng, J. Xu, F.
Deng, F. T. Fan, Z. C. Feng, C. Li, S. Maurer, U. Muller, F. S. Xiao, J.
Am. Chem. Soc. 2014, 136, 4019-4025.
[
[
1]
2]
M. E. Davis, Nature 2002, 417, 813-821.
a) J. H. Yu, R. Xu, Acc. Chem. Res. 2010, 43, 1195-1204; b) J. Y. Li, A.
Corma, J. H. Yu, Chem. Soc. Rev. 2015, 44, 7112-7127. c) J. X. Jiang,
J. H. Yu, A. Corma, Angew. Chem. Int. Ed. 2010, 49, 3120-3145.
a) J. L. Sun, C. Bonneau, Á. Cantín, A. Corma, M. J. Díaz-Cabañas, M.
Moliner, D. L. Zhang, M. R. Li, X. D. Zou, Nature 2009, 458, 1154-1157;
b) J. X. Jiang, J. L. Jorda, J. H. Yu, L. A. Baumes, E. Mugnaioli, M. J.
Díaz-Cabañas, U. Kolb, A. Corma, Science 2011, 333, 1131-1134.
[
[
20] a) M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature
2009, 461, 246-249; b) J. Wang, L. Xu, K. Zhang, H. Peng, H. Wu, J.-G.
[
3]
Jiang, Y. Liu, P. Wu, J. Catal. 2012, 288, 16-23.
21] P. Wu, T. Tatsumi, T. Komatsu, T. Yashima, J. Catal. 2001, 202, 245-
255.
This article is protected by copyright. All rights reserved.