10.1002/adsc.201801076
Advanced Synthesis & Catalysis
To conclude, we have successfully accomplished an
original method for synthesis of functionalized
tetrazolo[1,5-a]quinoxalin-4(5H)-ones based on
[3+2] cyclization of azidotrimethylsilane with
quinoxalin-2(1H)-ones. This protocol utilizes cheap
Cu(eh)2 as a catalyst and safe TMSN3 as azide source,
as well as tolerates a wide range of functional groups
under mild reaction conditions. Therefore, this
method provides a practical approach to prepare
pharmaceutically and biologically interesting
tetrazolo[1,5-a]quinoxalin-4(5H)-ones in moderate to
excellent yields.
2006, 6, 1179; f) S. Leilei, H. Wei, W. Jifeng, Z.
Huaiyu, Z. Hua, L. Xun, Mini-Rev. Med. Chem. 2018,
18, 392.
[2] a) N. G. Koshel, E. G. Kovalev, I. Y. Postovskii, Chem.
Heterocycl. Compd. 1970, 6, 791; b) J. Klicnar, J.
Toman, Collect. Czech. Chem. Commun. 1981, 46,
2110; c) K. Makino, G. Sakata, K. Morimoto,
Heterocycles, 1985, 23, 2025; d) L. A. McQuaid, E. C.
R. Smith, K. K. South, C. H. Mitch, D. D. Schoepp, R.
A. True, D. O. Calligaro, P. J. O'Malley, D. Lodge, P.
L. Ornstein, J. Med. Chem. 1992, 35, 3319.
[3] a) X.-H. Wei, Y.-M. Li, A.-X. Zhou, T.-T. Yang, S.-D.
Yang, Org. Lett. 2013, 15, 4158; b) F. Xie, Z. Qi, X. Li,
Angew. Chem. 2013, 125, 12078;Angew. Chem., Int.
Ed. 2013, 52, 11862; c) Z. Li, C. Zhang, L. Zhu, C. Liu,
C. Li, Org. Chem. Front. 2014, 1, 100; d) F. Wang, X.
Qi, Z. Liang, P. Chen, G. Liu, Angew. Chem. 2014, 126,
1912; Angew. Chem. Int. Ed. 2014, 53, 1881; e) G.
Dagousset, A. Carboni, E. Magnier, G. Masson, Org.
Lett. 2014, 16, 4340; f) P. Li, J. Zhao, C. Xia, F. Li,
Org. Chem. Front. 2015, 2, 1313; g) R. Ren, H. Zhao,
L. Huan, C. Zhu, Angew. Chem. 2015, 127, 12883;
Angew. Chem. Int. Ed. 2015, 54, 12692; h) W. Kong, N.
Fuentes, A. García-Domínguez, E. Merino, C. Nevado,
Angew. Chem. 2015, 127, 2517; Angew. Chem., Int. Ed.
2015, 54, 2487; i) J. Xu, X. Li, Y. Gao, L. Zhang, W.
Chen, H. Fang, G. Tang, Y. Zhao, Chem. commun.
2015, 51, 11240; j) L. Huang, J.-S. Lin, B. Tan, X.-Y.
Liu, ACS Catal. 2015, 5, 2826; k) Y.-T. He, Q. Wang, J.
Zhao, X.-Y. Liu, P.-F. Xu, Y.-M. Liang, Chem.
Commun. 2015, 51, 13209; l) F. Wang, N. Zhu, P.
Chen, J. Ye, G. Liu, Angew. Chem. 2015, 127, 9488;
Angew. Chem. Int. Ed. 2015, 54, 9356; m) Y. Wang,
G.-X. Li, G. Yang, G. He, G. Chen, Chem. Sci. 2016, 7,
2679; n) X. Li, Z.-J. Shi, Org. Chem. Front. 2016, 3,
1326; o) Y. Ning, Q. Ji, P. Liao, E. A. Anderson, X. Bi,
Angew. Chem. Int. Ed. 2017, 56, 13805; p) A. Bunescu,
T. M. Ha, Q. Wang, J. Zhu, J. Zhu, Angew. Chem. 2017,
129, 10691; Angew. Chem., Int. Ed. 2017, 56, 10555; q)
D. Wang, F. Wang, P. Chen, Z. Lin, G. Liu, Angew.
Chem. 2017, 129, 2086; Angew. Chem., Int. Ed. 2017,
56, 2054; r) C. E. Hendrick, K. J. Bitting, S. Cho, Q.
Wang, J. Am. Chem. Soc. 2017, 139, 11622; s) Z. Liu,
Z.-Q. Liu, Org. Lett. 2017, 19, 5649; t) P. Zhou, L. Lin,
L. Chen, X. Zhong, X. Liu, X. Feng, J. Am. Chem. Soc.
2017, 139, 13414; u) Q. Meng, F. Chen, W. Yu, B. Han,
Org. Lett. 2017, 19, 5186; v) L.-Z. Yu, Y. Wei, M. Shi,
Chem. Commun. 2017, 53, 8980; w) X. Geng, F. Lin, X.
Wang, N. Jiao, Org. Lett. 2017, 19, 4738; x) Y. Zhang,
X. Han, J. Zhao, Z. Qian, T. Li, Y. Tang, H.-Y. Zhang,
Adv. Synth. Catal. 2018, 360, 2659; y) J. Dhineshkumar,
K. Gadde, K. R. Prabhu, J. Org. Chem. 2018, 83, 228;
z) Á. Georgiádes, S. B. Ötvös, F. Fülöp, Adv. Synth.
Catal. 2018, 360, 1841.
Experimental Section
General procedure for cyclization of quinoxalin-2(1H)-
ones
An oven-dried Schlenk tube was charged with quinoxalin-
2(1H)-one derivatives (1a-1ab) (0.4 mmol), KMnO4 (1.5
equiv., 0.6 mmol), Cu(eh)2 (0.2 equiv., 0.08 mmol), PivOH
(1 equiv., 0.4 mmol) and a magnetic stirring bar, and then
was purged with argon for three times. Anhydrous CH3CN
(4 ml) and TMSN3 (3 equiv., 1.2 mmol) were added in turn
via respective syringes, and the mixture was stirred at
room temperature in water bath under argon atmosphere
until the substrate was consumed (monitored by TLC,
about 10 hours). The mixture was added with CH2Cl2 (20
ml) and saturated aqueous Na2CO3 (20ml). The organic
layer was isolated and the remaining aqueous phase was
further extracted with CH2Cl2 (20 mL × 2). The combined
organic phases were washed with saturated brine (20 mL).
The organic layers were dried over Na2SO4, filtered.
Solvents were evaporated under reduced pressure and the
resulting residue was purified by column chromatography
on neutral aluminum oxide (petroleum ether/ethyl acetate)
to afford the corresponding cyclization products (2a-2ab).
Acknowledgements
We acknowledge the financial support from the National Natural
Science Foundation of China (Grant No. 21776056), the Natural
Science Foundation of Hebei Province (CN) (Grant No.
B2018202253, B2016202393, B2015202284) and the Program
for the Top Young Innovative Talents of Hebei Province (CN)
(Grant No. BJ2017010).
References
[1] Active tetrazoles, see: a) E. S. Schaffert, G. Höfner, K.
T. Wanner, Bioorg. Med. Chem. 2011, 19, 6492; b) E.
Kobayashi , H. Togo, Tetrahedron 2018, 74, 4226; c) P.
Dai, K. Luo, X. Yu, W.-C. Yang, L. Wu, W.-H. Zhang,
Adv. Synth. Catal. 2018, 360, 468. Active quinoxalines,
see: d) M. Patel, R. J. McHugh, B. C. Cordova, R. M.
Klabe, S. Erickson-Viitanen, G. L. Trainor, J. D.
Rodgers, Med. Chem. Lett. 2000, 10, 1729; e) A. Carta,
S. Piras, G. Loriga, G. Paglietti, Mini-Rev. Med. Chem.
[4] a) J. v. Braun, W. Keller, Ber. Dtsch. Chem. Ges. 1932,
65, 1677; b) C. Arnold, D. N. Thatcher, J. Org. Chem.
1969, 34, 1141; c) J. V. Duncia, M. E. Pierce, J. B.
Santella, J. Org. Chem. 1991, 56, 2395; d) S. J.
Wittenberger, B. G. Donner, J. Org. Chem. 1993, 58,
4139; e) T. Nixey, M. Kelly, C. Hulme, Tetrahedron
Lett. 2000, 41, 8729; f) F. Himo, Z. P. Demko, L.
4
This article is protected by copyright. All rights reserved.