R. K. Mishra, K. K. Upadhyay
FULL PAPER
Experimental Section
[1]
a) C. M. Phillips, E. R. Schreiter, Y. Guo, S. C. Wang, D. B.
Zamble, C. L. Drennan, Biochemistry 2008, 47, 1938–1946; b)
S. C. Wang, A. V. Dias, D. B. Zamble, Dalton Trans. 2009,
2459–2466.
A. Sigel, H. Sigel, R. K. O. Sigel in Nickel and Its Surprising
Impact in Nature, Wiley, U. K., 2007, vol. 2.
a) P. T. Chivers, R. T. Sauer, Protein Sci. 1999, 8, 2494–2500;
b) N. S. Dosanjh, S. L. Michel, Curr. Opin. Chem. Biol. 2006,
10, 123–130; c) J. S. Iwig, S. Leitch, R. W. Herbst, M. J. Ma-
roney, P. T. Chivers, J. Am. Chem. Soc. 2008, 130, 7592–7606.
a) T. Chattopadhyay, M. Mukherjee, A. Mondal, P. Maiti, A.
Banerjee, K. S. Banu, S. Bhattacharya, B. Roy, D. J. Chatto-
padhyay, T. K. Mondal, M. Nethaji, E. Zangrando, D. Das,
Inorg. Chem. 2010, 49, 3121–3129; b) H. A. Malik, G. J. Sor-
munen, J. Montgomery, J. Am. Chem. Soc. 2010, 132, 6304–
6305.
Materials and General Methods: All titration experiments were con-
ducted at room temperature. For the UV/Vis titrations, a 1.0ϫ
10–3 m stock solution of R1 was prepared; 2.5ϫ 10–5 m solutions
were subsequently prepared by diluting a suitable aliquot of stock
solution with EtOH/H2O. The metal-binding studies were per-
formed by separate concomitant additions of Ni2+/Cu2+ to R1, giv-
ing sufficient time to develop the color after each addition. The
actual titrations between R1 and Ni2+ were performed in water/
ethanol mixtures (25:75). The maximum water-tolerance limit was
also determined in this way.
[2]
[3]
[4]
R1 was prepared as previously reported[17] and characterized by
1
IR, H and 13C NMR spectroscopic methods, along with mass de-
termination with LC-MS (Supporting Information, Figures S1–
S3). Yield 83%. IR (KBr): ν
= 3429, 3142, 2932, 1720, 1609,
[5] a) N. Kaur, S. Kumar, Tetrahedron Lett. 2008, 49, 5067–5069;
b) W. Lin, L. Yuan, X. Cao, W. Tan, Y. Feng, Eur. J. Org.
Chem. 2008, 4981–4987; c) N. Kaur, S. Kumar, Chem. Com-
mun. 2007, 3069–3070; d) H. Li, Z. Cui, C. Han, Sensors Actu-
ators B 2009, 143, 87–92; e) M. J. E. Resendiz, J. C. Noveron,
H. Disteldorf, S. Fischer, P. J. Stang, Org. Lett. 2004, 6, 651–
653.
˜
max
1569, 1450, 1377, 1236, 1139, 1025, 958, 859, 751, 635, 578 cm–1.
1H NMR (400 MHz, [D6]DMSO): δ = 2.30 (s, 3 H, CH3), 7.48–
7.38 (m, 4 H, ArH), 7.67–7.63 (m, 2 H, ArH), 7.89–7.80 (m, 3 H,
ArH), 8.19 (s, 1 H, ArH), 8.60 (s, 1 H, ArH), 11.45 (s, 1 H,
NH) ppm. 13C NMR (100 MHz, [D6]DMSO): δ = 16.1, 111.2,
115.8, 115.9, 118.8, 119.1, 124.7, 126.4, 128.7, 129.1, 131.7, 132.2,
138.1, 140.7, 152.2, 153.2, 158.7, 159.0, 168.7 ppm. MS (ESI): m/z
= 430.2 [C23H15N3O4S = 429.1].
[6]
a) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew.
Chem. Int. Ed. 2000, 39, 3348–3391; b) A. P. de Silva, H. Q. N.
Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy,
J. T. Rademacher, T. E. Rice, Chem. Rev. 1997, 97, 1515–1566;
c) V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavicini, Acc.
Chem. Res. 2001, 34, 488–493; d) K. Szaciłowski, Chem. Rev.
2008, 108, 3481–3548; e) K.-C. Chang, I.-H. Su, Y.-Y. Wang,
W.-S. Chung, Eur. J. Org. Chem. 2010, 4700–4704.
Synthesis of R1–Ni2+ Complex: A methanolic solution (10 mL) of
Ni(CH3COO)2·4H2O (0.025 g, 0.1 mmol) was added dropwise to a
methanolic solution (5 mL) of R1 (0.043 g, 0.1 mmol), and the
solution was stirred for 4 h. A dark-red precipitate was observed,
which was filtered and dried in vacuo. Rectangular dark colored
crystals of the R1–Ni2+ complex that were suitable for X-ray data
collection were obtained after a few days by slow diffusion of a
CH2Cl2 solution of the complex covered with a layer of petroleum
[7]
[8]
a) H. Zhang, X. Lin, Y. Yan, L. Wu, Chem. Commun. 2006,
4575–4577; b) M. Suresh, D. A. Jose, A. Das, Org. Lett. 2007,
9, 441–444; c) M. Biancardo, C. Bignozzi, H. Doyle, G. Red-
mond, Chem. Commun. 2005, 3918–3920; d) D. C. Magri, G. J.
Brown, G. D. McClean, A. P. de Silva, J. Am. Chem. Soc. 2006,
128, 4950–4951.
a) A. P. de Silva, Nature 1993, 364, 42–44; b) D. C. Magri, New
J. Chem. 2009, 33, 457–461; c) A. P. de Silva, H. Q. N. Guner-
atne, G. E. M. Maguire, J. Chem. Soc., Chem. Commun. 1994,
1213–1214; d) A. P. de Silva, I. M. Dixon, H. Q. N. Gunaratne,
T. Gunnlaugsson, P. R. S. Maxwell, T. E. Rice, J. Am. Chem.
Soc. 1999, 121, 1393–1394; e) S. Banthia, A. Samanta, Eur.
J. Org. Chem. 2005, 4967–4970; f) A. Credi, V. Balzani, S. J.
Langford, J. F. Stoddart, J. Am. Chem. Soc. 1997, 119, 2679–
2681; g) J. F. Callan, A. P. de Silva, N. D. McClenaghan, Chem.
Commun. 2004, 2048–2049; h) H. T. Baytekin, E. U. Akkaya,
Org. Lett. 2000, 2, 1725–1727; i) G. Nishimura, K. Ishizumi,
Y. Shiraishi, T. Hirai, J. Phys. Chem. B 2006, 110, 21596–21602;
j) M. Asakawa, P. R. Ashton, V. Balzani, A. Credi, G. Mat-
tersteig, O. A. Matthews, M. Montalti, N. Spencer, J. F. Stod-
dart, M. Venturi, Chem. Eur. J. 1997, 3, 1992–1996.
ether. Yield (0.080 g, ca. 88%). IR (KBr): νmax = 1719 (C=O), 1656
˜
(C=N), 1600, 1552, 1517, 1442, 1374, 1319, 1226, 1175, 1080, 1029,
960, 849, 756, 609, 460 cm–1. MS (ESI): m/z
= 915.4
(C46H28N6NiO8S2 = 915.5). UV/Vis (DMSO): 300, 333, 535 nm;
UV/Vis (MeOH): 300, 333, 508 nm.
Crystallographic Data for R1–Ni2+ Complex: C46H28N6NiO8S2;
monoclinic; a = 7.261(5) Å, b = 37.762(5) Å, c = 14.736(5) Å, α =
90.000(5)°, β = 102.022(5)°, γ = 90.000(5)°; V = 3952(3) Å3; T =
293(2) K; space group C1c1; Z = 4; OXFORD CCD-based dif-
fractometer; λ = 0.71073 Å (Mo-Kα); θmax = 26.190°. The final R1
values were 0.0574 [IϾ2σ(I)]. The final wR(F2) values were 0.1640
[IϾ2σ(I)]. The goodness of fit on F2 was 1.123. CCDC-787811
contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[9]
a) D. Margulies, G. Melman, A. Shanzer, J. Am. Chem. Soc.
2006, 128, 4865–4871; b) K. K. Upadhyay, A. Kumar, R. K.
Mishra, T. M. Fyles, S. Upadhyay, K. Thapliyal, New J. Chem.
2010, 34, 1862–1866.
Supporting Information (see footnote on the first page of this arti-
cle): 1H and 13NMR spectra, mass spectrum of the receptor and
its Ni2+ complex, and other UV/Vis spectra.
[10]
a) K. K. Upadhyay, R. K. Mishra, V. Kumar, P. K. R.
Chowdhury, Talanta 2010, 82, 312–318; b) K. K. Upadhyay, A.
Kumar, Talanta 2010, 82, 845–849; c) K. K. Upadhyay, A. Ku-
mar, Org. Biomol. Chem. 2010, 8, 4892–4897.
[11]
[12]
F. Knoevenagel, Ber. Dtsch. Chem. Ges. 1898, 31, 32.
R. S. Lokhande, S. Nirupa, A. B. Chaudhary, Asian J. Chem.
2002, 14, 149.
C. F. Koelsch, J. Am. Chem. Soc. 1950, 72, 2993–2995.
IUPAC, Spectrochim. Acta Part B, 1978, 33, 242; USEPA, Ap-
pendix B to Part 136-Definition and Procedure for the Deter-
mination of the Method Detection Limit-Revision 1.11, Fed-
eral Register 49 (209), 43430, October 26, 1984. Also referred
to as “40 CFR Part 136”.
Acknowledgments
The authors are thankful to Prof. Thomas M. Fyles, University of
Victoria, Canada, and Prof. A. P. de Silva, Queen’s University of
Belfast, Ireland, for their useful suggestions during the preparation
of this manuscript. R. K. M. is thankful to the Council of Scientific
and Industrial Research (CSIR), New Delhi, India, for financial
support in the form of SRF (NET).
[13]
[14]
4804
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 4799–4805