Park et al.
behaviors,7,8,14 or enzyme-like activity.14 It has also been
well-recognized that the orientation of guest molecules
in CD complexes, and thus the selectivity for the side of
the CD cavity in the inclusion of guest molecules, is
important to the physicochemical properties of CD com-
plexes and in designing CD-based supramolecular struc-
and inclusion complexation of viologens with CDs has
been a subject of numerous studies.1
5,17,19-23
â-CD deriva-
tives with covalently linked viologen units exhibit many
interesting inclusion behaviors, depending on the oxida-
tion states of the viologen unit.9
,10,24-28
For the â-CD-
viologen compounds in which the bipyridinium group is
15-17
tures.
A potentially powerful method for determining
2+
directly attached to the primary side of â-CD (1 and
the structures of CD complexes is induced circular
dichroism (ICD), which theoretically relates the sign and
magnitude of the ICD spectrum of a chromophore to the
the analogues having various N-alkyl groups), facile
dimerization of the â-CD-viologens was observed upon
9
10
one-electron or two-electron reduction of the viologen
moiety. In contrast to this, the â-CD-viologens in which
the viologen unit is linked to the secondary face of the
location and orientation of the chromophore with respect
to the CD cavity.1
6-21
However, there is a paucity of
reports showing an ICD spectral change of the same
chromophore, depending on its location in CD com-
2+
â-CD via polymethylene chains (3 and the analogue
with a tetramethylene linkage instead of an octameth-
ylene chain) exhibit little tendency to dimerize upon one-
1
6,17
plexes.
Viologens (N,N′-disubstituted 4,4′-bipyridinium salts)
have been widely used as electron acceptors or mediators
in many photochemical and electrochemical reactions,
26
electron reduction of their viologen moiety, but the two-
2+
electron reduction product of 3 exhibits a much higher
stability against reaction with water than does the two-
2
+
electron reduction product of 1 or dimethyl viologen
2
+ 26,27
(
5) (a) Nielson, M. B.; Nielson, S. B.; Becker, J. Chem. Commun.
998, 475. (b) Dodziuk, H.; Chmurski, K.; Jurczak, J.; Kozminski, W.;
Lukin, O.; Sitkowski, J.; Stefaniak, J. J. Mol. Struct. 2000, 519, 33.
c) Anibarro, M.; Gessler, K.; Uson, I.; Sheldrick, G. M.; Harata, K.;
Uekama, K.; Hirayama, F.; Abe, Y.; Saenger, W. J. Am. Chem. Soc.
001, 123, 11854.
6) (a) Matsumura, S.; Sakamoto, S.; Ueno, A.; Mihara, H. Chem.s
(MV ).
Facile photoinduced electron-transfer reac-
1
2+
2+
tions from excited guest photosensitizers to 1 or 3 via
inclusion complexation were also reported.2
4,28
(
2
(
Eur. J. 2000, 6, 1781. (b) Impellizzeri, G.; Pappelardo, G.; D’Alessandro,
F.; Rizzarelli, E.; Saviano, M.; Iacovino, R.; Benedetti, E.; Pedone, C.
Eur. J. Org. Chem. 2000, 1065. (c) Berthault, P.; Birlirakis, N.
Tetrahedron: Asymmetry 2000, 11, 2463.
(
7) (a) Park, K. K.; Kim, Y. S.; Lee, S. Y.; Song, H. E.; Park, J. W.
J. Chem. Soc., Perkin Trans. 2 2001, 2114. (b) Liu, Y.; You, C.-C.;
Zhang, H.-Y.; Zhao. Y.-L. Eur. J. Org. Chem. 2003, 1415.
(
8) (a) Murakami, T.; Harata, K.; Morimoto, S. Chem. Lett. 1988,
5
53. (b) Suzuki, I.; Obata, K.; Anzai, J.; Ikeda, H.; Ueno, A. J. Chem.
Soc., Perkin Trans. 2 2000, 1705.
(
9) Park, J. W.; Choi, N. H.; Kim, J. H. J. Phys. Chem. 1996, 100,
7
69.
In this work, we studied self-inclusion behavior and
(
10) Mirzoian, A.; Kaifer, A. E. Chem. Commun. 1999, 1603.
11) Park, J. W.; Song, H. E.; Lee, S. Y. J. Phys. Chem. B 2002,
2
+
(
circular dichroism characteristics of â-CD-viologens 2
1
06, 5177.
2+
and 3 and their one- and two-electron-reduced com-
pounds by H NMR and circular dichroism spectroscopic
(12) (a) Park, J. W.; Song, H. E.; Lee, S. Y. J. Org. Chem. 2003, 68,
1
7
071. (b) Gao, X.-M.; Tong, L.-H.; Zhang, Y.-L.; Hao, A.-Y.; Inoue, Y.
Tetrahedron Lett. 1999, 40, 969. (c) Gao, X.-M.; Zhang, Y.-L.; Tong,
L.-H.; Ye, Y.-H.; Ma, X.-Y.; Liu, W.-S.; Inoue, Y. J. Inclusion Phenom.
Macrocyclic Chem. 2001, 39, 77. (d) de Jong, M. R.; Berthault, P.; van
Hoek, A.; Visser, A. J. W. G.; Huskens, J.; Reinhoudt, D. N. Supramol.
Chem. 2002, 14, 143. (e) Lecourt, I.; Mallet, T. M.; Sinay, P. Tetraheron
Lett. 2002, 43, 5533. (f) Petter, R. C.; Salek, J. S.; Sikorski, C. T.;
Kumaravel, G.; Lin, F. T. J. Am. Chem. Soc. 1990, 112, 3860. (g)
Hoshino, T.; Miyauchi, M.; Kawaguchi, Y.; Yamaguchi, H.; Harada,
A. J. Am. Chem. Soc. 2000, 122, 9876. (h) B u¨ gler, J.; Sommerdijk, N.
A. J. M.; Visser, A. J. W. G.; van Hoek, A.; Nolte, R. J. M.; Engbersen,
J. F. J.; Reinhoudt, D. N. J. Am. Chem. Soc. 1999, 121, 28. (i) Liu, Y.;
Zhang, H.-Y.; Diao, C.-H. Org. Lett. 2003, 5, 251.
2+
2+
methods. The compounds 2
and 3
were chosen
because they have similar linkage lengths between the
â-CD skeleton and bipyridinium groups, but the side of
attachment is different. The major points to be addressed
are as follows: (1) difference in the self-inclusion behavior
of 22 and 3 , and their reduced forms; (2) generalization
+
2+
of the previously observed face selectivity of the oxidized
form of viologens in their intermolecular complexation
15,17
with CDs
to the reduced forms of viologen as well as
(
13) (a) Fujimoto, T.; Sakata, Y.; Kaneda, T. Chem. Commun. 2000,
143. (b) Fujimoto, T.; Sakata, Y.; Kaneda, T. Chem. Lett. 2000, 764.
c) Fujimoto, T.; Nakamura, A.; Inoue, Y.; Sakata, Y.; Kaneda, T.
Tetrahedron Lett. 2001, 42, 7987.
14) (a) Breslow, R.; Czarnik, A. W.; Lauer, M.; Leppkes, R.; Winkler,
to intramolecular complexation; (3) ICD characteristics
of the oxidized and reduced viologen chromophores
located in the different positions with respect to the CD
cavity.
2
(
(
J.; Zimmerman, S. J. Am. Chem. Soc. 1986, 108, 1969. (b) D’Souza, V.
T.; Bender, M. L. Acc. Chem. Res. 1987, 20, 146. (c) Breslow, R.; Dong,
S. D. Chem. Rev. 1998, 98, 1997.
(
15) Park, J. W.; Song, H. E.; Lee, S. Y. J. Phys. Chem. B 2002,
06, 7186 and references therein.
16) (a) Bobek, M. M.; Krois, D.; Brinker, U. Org. Lett. 2000, 2, 1999.
(22) (a) Matsue, T.; Kato, T.; Akiba, U.; Osa, T. Chem. Lett. 1985,
1825. (b) Mirzoian, A.; Kaifer, A. E. Chem.sEur. J. 1997, 3, 1052.
(23) (a) Diaz, A.; Quintela, P. A.; Schuette, J. M.; Kaifer, A. E. J.
Phys. Chem. 1988, 92, 3537. (b) Lee, C.; Kim, C.; Park, J. W. J.
Electroanal. Chem. 1994, 374, 115. (c) Lee, C.; Moon, M. S.; Park, J.
W. J. Electroanal. Chem. 1996, 407, 161.
1
(
(
b) Allenmark, S. Chirality 2003, 15, 409. (c) Zhang, X.; Nau, W. M.
Angew. Chem., Int. Ed. 2000, 39, 544. (d) Bakirci, H.; Zhang, X.; Nau,
W. M. J. Org. Chem. 2005, 70, 39.
(
17) Park, J. W.; Song, H. J. Org. Lett. 2004, 6, 4869.
(24) Du, Y.-q.; Nakamura, A.; Toda, F. Bull. Chem. Soc. Jpn. 1990,
63, 3351.
(
18) (a) Harata, K.; Uedaira, H. Bull. Chem. Soc. Jpn. 1975, 48, 375.
(
b) Shimizu, H.; Kaito, A.; Hatano, M. Bull. Chem. Soc. Jpn. 1979, 52,
(25) Du, Y.-q.; Harada, T.; Nakamura, A.; Ueno, A.; Toda, F. Chem.
Lett. 1990, 2235.
2
678. (c) Shimizu, H.; Kaito, A.; Hatano, M. Bull. Chem. Soc. Jpn. 1981,
5
4, 513.
(
(26) Park, K. K.; Han, S. Y.; Park, Y.-H.; Park, J. W. Tetrahedron
Lett. 1997, 38, 4231.
19) (a) Kodaka, M.; Fukaya, T. Bull. Chem. Soc. Jpn. 1986, 59,
2
(
032. (b) Kodaka, M.; Fukaya, T. Bull. Chem. Soc. Jpn. 1989, 62, 1154.
(27) Park, J. W.; Kim, J. H.; Hwang, B. K.; Park, K. K. Chem. Lett.
1994, 2075.
c) Kodaka, M. J. Phys. Chem. 1991, 95, 2110.
(
(
20) Kodaka, M. J. Am. Chem. Soc. 1993, 115, 3702.
21) Kodaka, M. J. Phys. Chem. A 1998, 102, 8101.
(28) Park, J. W.; Park, S. H.; Lee, B. A.; Lee, S. Y. Chem. Lett. 1997,
1043.
9506 J. Org. Chem., Vol. 70, No. 23, 2005