J Biol Inorg Chem (2013) 18:993–1003
1003
23. Kim MY, Vankayalapati H, Shinya K, Wierzba K, Hurley LH
(2002) J Am Chem Soc 124:2098–2099
24. Rajput C, Rutkaite R, Swanson L, Haq I, Thomas JA (2006)
Chem Eur J 12:4611–4619
25. Mandal SS, Varshney U, Bhattacharya S (1997) Bioconjug Chem
8:798–812
26. Routier S, Cotelle N, Catteau JP, Bernier J L, Waring MJ, Riou J
F, Bailly C (1996) Bioorg Med Chem 4:1185–1196
27. Muller JG, Kayser LA, Paikoff SJ, Duarte V, Tang N, Perez RJ,
Rokita SE, Burrows CJ (1999) Coord Chem Rev 185:761–774
28. Reed JE, Arnal AA, Neidle S, Vilar R (2006) J Am Chem Soc
128:5992–5993
29. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326
30. Wolfe A, Shimer GH, Meehan T (1987) Biochemistry 26:6392–6396
31. Zhou JL, Lu YJ, Ou TM, Zhou JM, Huang ZS, Zhu XF, Du CJ,
Bu XZ, Ma L, Gu LQ (2005) J Med Chem 48:7315–7321
32. Sun D, Zhang R, Yuan F, Liu D, Zhou Y, Liu J (2012) Dalton
Trans 41:1734–1741
binding constant demonstrated that CuNS showed much
higher affinity toward G-quadruplex DNA than toward CT-
DNA, probably owing to its square-pyramidal coordination
geometry. CD studies revealed that CuNS is a good
G-quadruplex stabilizer and could keep G-quadruplexes
parallel in the presence of Na? ions. EMSA further dem-
onstrated that CuNS can promote conversion of G-quad-
ruplex to the dimeric form. MTT assay showed that NS and
especially CuNS are cytotoxic to the HepG2 cell line. All
these findings suggest that the copper(II) center played a
very important role in stabilizing G-quadruplex DNA and
enhancing the cytotoxicity.
Acknowledgments This work was supported by the National Sci-
entific Foundation of China (no. 21171038) and the Program for
Changjiang Scholars and Innovative Research Team in University
(no. IRT1116).
33. Blagosklonny MV, EI-diery WS (1996) Int J Cancer 67:386–392
34. Li MJ, Liu X, Nie MJ, Wu ZZ, Yi CQ, Chen GN, Yam VWW
(2012) Organometallics 31:4459–4466
35. Barve A, Kumbhar A, Bhat M, Joshi B, Butcher R, Sonawane U,
Joshi R (2009) Inorg Chem 48:9120–9132
36. Rajendiran V, Karthik R, Palaniandavar M, Stoeckli–Evans H,
Periasamay VS, Akbarsha MA, Srinag BS, Krishnamurthy H
(2007) Inorg Chem 46:8208–8221
References
1. Choi YK, Chjo KH, Park SM, Doddapaneni N (1995) J Elect-
rochem Soc 142:4107–4112
2. Bernardo K, Leppard S, Robert A, Commenges G, Dahan F,
Meunier B (1996) Inorg Chem 35:387–396
3. Anitha C, Sheela CD, Tharmaraj P, Sumathi S (2012) Spectro-
chim Acta Part A Mol Biomol Spectrosc 98:35–42
4. Raman N, Kulandaisamy A, Jeyasubramanian K (2001) Synth
React Inorg Met Org Chem 31:1249–1270
5. Tantaru G, Popescu MC, Bild V, Poiata A (2012) Appl Orga-
nomet Chem 26:356–361
37. Bhalla V, Tejpal R, Kumar M 0(2011) Tetrahedron 67:1266–1271
`
38. Jezu owska-Bojczuk M, Les niak W, Bal W, Kozłowski H,
Gatner K, Jezierski A, Sobczak J, Mangani S, Meyer-Klaucke W
(2001) Chem Res Toxicol 14:1353–1362
39. Baldini M, Belicchi-Ferrari M, Bisceglie F, Dall’Aglio PP, Pelosi
G, Pinelli S, Tarasconi P (2004) Inorg Chem 43:7170–7179
40. Le Pecq JB, Paoletti CJ (1967) Mol Biol 27:87–106
41. Raja DS, Bhuvanesh NSP, Natarajan K (2011) Inorg Chem
50:12852–12866
42. Mahadevan S, Palaniandavar M (1998) Inorg Chem 37:693–700
43. Rajendiran V, Murali M, Suresh E, Palaniandavar M, Periasamy
VS, Akbarsha MA (2008) Dalton Trans 16:2157–2170
44. Johnson WC (1994) In: Nakanishi K, Berova N, Woody RW
(eds) Circular dichroism: principles and applications. VCH, New
York, pp 523–540
45. Messori L, Orioli P, Tempi C, Marcon G (2001) Biochem Bio-
phys Res Commun 281:352–360
46. Peti W, Meiler J, Br_schweiler R, Griesinger C (2002) J Am
Chem Soc 124:5822–5833
47. Miyoshi D, Nakao A, Sugimoto N (2003) Nucleic Acids Res
31:1156–1163
48. Jain AK, Paul A, Maji B, Muniyappa K, Bhattacharya S (2012) J
Med Chem 55:2981–2993
49. Xue Y, Kan Z, Wang Q, Yao Y, Liu J, Hao Y, Tan Z (2007) J Am
Chem Soc 129:11185–11191
50. Lin CT, Tseng TY, Wang ZF, Chang TC (2011) J Phys Chem B
115:2360–2370
6. Dardlier PJ, Holmlin RE, Barton JK (1997) Science 274:1465–1468
7. Barton JK (1986) Science 223:727–733
8. Hall DB, Holmlin RE, Barton JK (1996) Nature 382:731–735
9. Yang G, Wu JZ, Wang L, Ji LN, Tian X (1997) J Inorg Biochem
66:141–144
10. Zhang QL, Liu JG, Chao H, Xue GQ, Ji LN (2001) J Inorg
Biochem 83:49–55
11. Liu JG, Ye BH, Zhang QL, Zou XH, Zhen QX, Tian X, Ji LN
(2000) Biol Inorg Chem 5:119–128
12. Lo LTL, Chu WK, Tam CY, Yiu SM, Ko CC, Chiu SK (2011)
Organometallics 30:5873–5881
13. Davis JT (2004) Angew Chem 116:684–716
14. Huppert JL (2008) Chem Soc Rev 37:1375–1384
15. Wang, Li Y, Tan JH, Ji LN, Mao ZW (2011) Dalton Trans
40:564–566
16. Monchaud D, Teulade-Fichou MP (2008) Org Biomol Chem
6:627–636
17. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006)
Nucleic Acids Res 34:5402–5415
18. Read MA, Harrison RJ, Romagnoli B, Tanious FA, Gowan SH,
Reszka AP, Wilson WD, Kelland LR, Neidle S (2001) Proc Natl
Acad Sci USA 98:4844–4849
19. Dixon IM, Lopez F, Esteve JP, Tejera AM, Blasco MA, Pratviel
G, Meunier B (2005) ChemBioChem 6:123–132
20. Koeppel F, Riou JF, Laoui A, Mailliet P, Arimondo PB, Labit D,
Petitgenet O, Helene C, Mergny JL (2001) Nucleic Acids Res
29:1087–1096
21. Clark GR, Pytel PD, Squire CJ, Neidle S (2003) J Am Chem Soc
125:4066–4067
22. Tuntiwechapikul W, Jeong TL, Salazar M (2001) J Am Chem
Soc 123:5606–5607
51. Liu D, Liu Y, Wang C, Shi S, Sun D, Gao F, Zhang Q, Liu J
(2012) ChemPlusChem 77:551–562
52. Lahiri D, Bhowmick T, Pathak B, Shameema O, Patra AK, Ra-
makumar S, Chakravarty AR (2009) Inorg Chem 48:339–349
53. Bertrand H, Monchaud D, De Cian A, Guillot R, Mergny JL,
Teulade-Fichou MP (2007) Org Biomol Chem 5:2555–2559
54. Han H, Langley DR, Rangan A, Hurley LH (2001) J Am Chem
Soc 123:8902–8913
55. Bhat SS, Kumbhar AA, Heptullah H, Khan AA, Gobre VV, Gejji
SP, Puranik VG (2011) Inorg Chem 50:545–558
56. Tardito S, Bassanetti I, Bignardi C, Elviri L, Tegoni M, Mu-
cchino C, Bussolati O, Franchi-Gazzola R, Marchio L (2011)
133:6235–6242
123