568
D.-Q. Yuan et al. / Tetrahedron Letters 44 (2003) 565–568
Figure 3. The procedures for the determination of the regiochemistry of the diphthalimido-a-CDs 2, 3 and 4 based on HPLC
analysis. (a) NH2NH2·H2O, H2O, 60°C, overnight; (b) DMF, DCC, HOBT, p-nitrobenzoic acid, rt, 4 h; (c) pyridine,
4,6-dimethoxy-1,3-benzenedisulfonyl chloride, rt, 3 h; (d) pyridine, dibenzofuran-2,8-disulfonyl chloride, rt, 3 h; (e) (1) DMF,
NaN3, 80°C, 12 h; (2) DMF, Ph3P, rt, overnight, then at rt for 24 h in the presence of aqueous NH3; (3) DMF, DCC, HOBT,
p-nitrobenzoic acid, rt, 4 h. The HPLC analysis was performed on a reversed-phase column (YMC ODS-AQ-313, 250×6.0 mm
I.D.) eluted with a gradient from 20% aqueous CH3CN and with the CH3CN concentration being increased at a rate of 0.5%/min.
The UV absorbance of the elutes was detected at u=280 nm. (i) A mixture of 8, 9 and 10; (ii) mixture of (i) and the authentic
6A,6B-di(p-nitrobenzamido)-a-CD; (iii) mixture of (i) and the authentic 6A,6C-di(p-nitrobenzamido)-a-CD.
Acknowledgements
60, 4786–4797.
6. Atsumi, M.; Izumida, M.; Yuan, D.-Q.; Fujita, K. Tetra-
We thank Japan Maize Products Co. Ltd for a gener-
ous gift of CDs.
hedron Lett. 2000, 41, 8117–8120.
7. Compound 2, 3 and 4 all showed the pseudomolecular ion
peak at m/z 1253(M+Na+) in the FAB-MS spectra. Their
1H (Fig. 2) and 13C NMR spectra are consistent with their
structures. The 13C NMR data (75 MHz, DMSO-d6,
References
CH3CN int., lCH CN=1.70) are as follows. Compound 2:
3
l 167.8, 167.3, 134.8, 134.7, 134.0, 130.7, 130.6, 130.4, 123.1,
122.5, 102.0, 101.2, 100.4, 100.3, 84.6, 84.0, 81.7, 81.6, 80.6,
80.0, 73.1, 72.8, 72.4, 72.1, 72.0, 71.8, 71.5, 71.4, 71.3, 71.2,
71.0, 70.7, 66.3, 59.8, 59.4, 58.1, 56.4, 39.3, 39.0. Compound
3: l 167.0, 134.0, 133.3, 130.1, 128.0, 127.3, 122.4, 121.7,
101.0, 100.9, 100.5, 99.7, 98.2, 83.2, 83.0, 80.3, 80.2, 79.5,
72.1, 72.0, 71.7, 71.4, 71.1, 70.9, 70.8, 70.6, 70.3, 68.8, 66.9,
58.6, 58.3, 57.3, 38.3, 38.0. Compound 4: l 168.2, 134.6,
131.4, 123.1, 102.1, 101.9, 101.2, 84.0, 81.4, 80.7, 73.1, 72.9,
72.4, 72.1, 71.9, 71.4, 68.8, 59.1, 57.9, 39.3.
1. Kahn, A. R.; Forgo, P.; Stine, K. J.; D’Souza, V. T. Chem.
Rev. 1998, 98, 1977–1996.
2. (a) Aronov, A. M.; Gelb, M. H. Tetrahedron 1998, 39,
4947–4950; (b) Hughes, D. L. Org. Prep. Proc. Int. 1996,
28, 127–164; (c) Mitsunobu, O. Synthesis 1981, 1–28.
3. (a) Yuan, D.-Q.; Koga, K.; Fujita, K.; Yamaguchi, M.
Tetrahedron Lett. 1997, 38, 7593–7596; (b) Yuan, D.-Q.;
Koga, K.; Yamaguchi, M.; Fujita, K. J. Chem. Soc., Chem.
Commun. 1996, 1943–1944; (c) Cucinotta, V.; D’Alessan-
dro, F.; Impellizzeri, G.; Vecchio, G. J. Chem. Soc., Chem.
Commun. 1992, 1743–1745; (d) Ikeda, H.; Du, Y.; Naka-
mura, A.; Toda, F. Chem. Lett. 1991, 1495–1498.
4. A mixture of 1 (0.1 mmol) and hydrazine hydrate (0.01 mol)
in H2O (2 mL) was stirred at 60°C overnight. After being
cooled down to rt, the reaction mixture was added dropwise
to acetone (50 mL). The resultant precipitates were collected
by filtration and applied to ion exchange chromatography
(Bio-Rad AG 50W-X2, 100–200 mesh, f-SO3H type,
washed with a gradient of 0ꢀ1.5% aq. ammonia solution)
to give the 6A-amino-6A-deoxy-a-CD (88%).
8. Breslow, R.; Schmuck, C. J. Am. Chem. Soc. 1996, 118,
6601–6605.
9. Koga, K.; Yuan, D.-Q.; Fujita, K. Tetrahedron Lett. 2000,
41, 6855–6857.
10. Fujita, K.; Matsunaga, A.; Imoto, T. J. Am. Chem. Soc.
1984, 106, 5740–5741.
11. (a) Coleman, A. W.; Ling, C.; Miocque, M. Angew. Chem.,
Int. Ed. Engl. 1992, 31, 1381; (b) Boger, J.; Brenner, D. G.;
Knowles, J. R. J. Am. Chem. Soc. 1979, 101, 7630.
12. Fujita, K.; Tahara, T.; Yamamura, H.; Imoto, T.; Koga,
T.; Fujioka, T.; Mihashi, K. J. Org. Chem. 1990, 55, 877.
5. Hanessian, S.;Benalil, A.;Laferriere, C. J. Org. Chem. 1995,