organic compounds
5
1
5
10
Hartree bohr
or 10
Hartree rad 1. A similar
Table 2
Hydrogen-bonding geometry (A, ).
ꢁ
Ê
geometry optimization was also performed using a density
functional theory (DFT) hamiltonian, with similar results to
the Hartree±Fock calculation. The DFT calculations were
performed with the computer code DeFT2.2 (St-Amant et al.,
1998) employing a VWC exchange-correlation potential
(Vosko et al., 1980). Both methods reproduce well the in-plane
twist of the C1ÐC7 bond [calculated values: C2ÐC1ÐC7
DFT 123.53ꢁ; MO±HF 123.55ꢁ, C6ÐC1ÐC7 DFT MO±HF
117.38ꢁ]. However, the minimum energy of the molecule
occurs for a geometry close to Cs symmetry where all the
substituent atoms are practically within the ring plane. We
conclude that the observed twist of the aldehyde group around
the C1ÐC7 bond is due to the intermolecular interaction
between the aldehyde and hydroxyl groups.
DÐHÁ Á ÁA
O2ÐH2Á Á ÁO1i
Symmetry code: (i)
DÐH
HÁ Á ÁA
DÁ Á ÁA
DÐHÁ Á ÁA
0.82
x; 12 y; 12 z.
1.99
2.804 (4)
175
1
Data collection
Enraf±Nonius CAD-4 diffract-
ometer
Pro®le data from !±2ꢄ scans
Absorption correction: scan
(North et al., 1968)
Tmin = 0.126, Tmax = 0.156
2879 measured re¯ections
762 independent re¯ections (plus
463 Friedel-related re¯ections)
925 re¯ections with I > 2ꢆ(I)
Rint = 0.035
ꢄmax = 24.97ꢁ
h = 0 ! 4
k = 10 ! 10
l = 22 ! 22
3 standard re¯ections
frequency: 180 min
intensity decay: 8.5%
Re®nement
The molecules are stacked in layers perpendicular to the
short a axis. The hydroxyl and carbonyl group interact via a
Re®nement on F2
R[F2 > 2ꢆ(F2)] = 0.023
wR(F2) = 0.051
S = 1.048
1225 re¯ections
92 parameters
H atoms constrained
w = 1/[ꢆ2(Fo2) + (0.023P)2 + 0.103P]
where P = (Fo2 + 2Fc2)/3
(Á/ꢆ)max = 0.001
Ê
hydrogen bond [O2Á Á ÁO1 2.804 (4) A] forming zigzag chains
3
Ê
Áꢀmax = 0.38 e A
running along the b axis (Fig. 2). Similar chains were found in
the crystal structure of 2,4,6-tribromo derivative in contrast
with the situation found in the 2,4-dibromo derivative where
the hydrogen bonds join pairs of molecules in dimers across a
centre of symmetry. Judging by the OÐHÁ Á ÁO bond distances
and angles, it appears that the strongest hydrogen bonds occur
in the monobromo derivative.
3
Ê
0.27 e A
Áꢀmin
=
Absolute structure: Flack (1983)
Flack parameter = 0.014 (17)
Data collection: CAD-4 Software (Enraf±Nonius, 1989); cell
re®nement: CAD-4 Software; data reduction: HELENA (Spek, 1997);
program(s) used to solve structure: SHELXS97 (Sheldrick, 1990);
program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997);
molecular graphics: ORTEPII (Johnson, 1976); software used to
prepare material for publication: SHELXL97.
Experimental
The title compound was prepared by slowly adding bromine (0.87 ml)
to a solution of 3-hydroxybenzaldehyde (2.0 g) in glacial acetic acid
(10 ml). After 3 h, water was added to precipitate a solid and the
mixture was left overnight in the refrigerator. The solid was ®ltered
and recrystallized in water to give 2.25 g of the title compound [ꢁ =
68%; m.p. 405±406 K, literature 406 K (Pandya et al., 1952)]. MS (EI)
The authors are indebted to Dr J. C. Prata Pina for his
invaluable assistance in the maintenance of the CAD-4
diffractometer. This work was supported by FundacËaÄo para a
Ã
Ciencia e Tecnologia (FCT) and Chymiotechnon.
Supplementary data for this paper are available from the IUCr electronic
archives (Reference: SK1352). Services for accessing these data are
described at the back of the journal.
1
201 (M+). H NMR (300 MHz, CDCl3/DMSO-d6, p.p.m.): ꢂ 10.1 (s,
1H, CHO), 9.7 (s, 1H, OH), 7.4 (d, 1H, J = 8.7 Hz, CH-aryl), 7.2 (d,
C
1H, J = 3.0 Hz, CH-aryl), 6.9 (dd, 1H, J = 8.7 and 3.0 Hz, CH-aryl); 13
NMR (75.5 MHz, CDCl3/DMSO-d6, p.p.m.): 191.4, 157.1, 134.0, 133.3,
References
1
123.1, 115.3, 114.9; IR (KBr) cm 3331 (m) (OH), 1684 (s, C O),
Binning, R. C. Jr & Curtiss, L. A. (1990). J. Comput. Chem. 11, 1206±1216.
Enraf±Nonius (1989). CAD-4 Software. Version 5.0. Enraf±Nonius, Delft, The
Netherlands.
1595, 1480 (s, C C aromatic), 1305 (s), 1236 (s), 1170 (m, CÐO), 866
(m), 831 (m), 763 (m), 586 (m) elemental analysis calculated for
C7H5O2Br: C 41.8, H 2.5%; found C 41.6, H 2.4%.
Flack, H. D. (1983). Acta Cryst. A39, 876±881.
Hodgson, H. H. & Beard, H. G. (1925). J. Chem. Soc. 127, 875±881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National
Laboratory, Tennessee, USA.
Matos Beja, A., PaixaÄo, J. A., Ramos Silva, M., Alte da Veiga, L., Rocha
Gonsalves, A. M. d'A., Pereira, M. M. & Serra, A. C. (1997). Acta Cryst.
C53, 494±496.
Matos Beja, A., PaixaÄo, J. A., Ramos Silva, M., Rocha Gonsalves, A. M. d'A.,
Pereira, M. M. & Serra, A. C. (1997). Z. Kristallogr. New Cryst. Struct. 213,
139±140.
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351±
359.
Crystal data
C7H5BrO2
Mr = 201.01
Orthorhombic, P212121
Ê
a = 3.974 (3) A
Ê
b = 9.164 (8) A
c = 19.172 (6) A
Ê
V = 698.2 (8) A
Z = 4
Dx = 1.912 Mg m
Mo Kꢃ radiation
Cell parameters from 25
re¯ections
ꢄ = 8.51±17.13ꢁ
1
ꢅ = 5.814 mm
T = 293 (2) K
Ê
3
Block, light yellow
0.38 Â 0.32 Â 0.32 mm
3
Pandya, K. C., Pandya, R. B. K. & Singh, R. N. (1952). J. Indian Chem. Soc. 29,
363±367.
Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S.,
Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L.,
Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347±1363.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467±473.
Table 1
Selected geometric parameters (ꢁ).
C2ÐC1ÐC6
C3ÐC2ÐC1
C2ÐC3ÐC4
118.3 (3)
121.1 (3)
120.1 (3)
C3ÐC4ÐC5
C6ÐC5ÐC4
C5ÐC6ÐC1
120.1 (3)
120.0 (3)
120.4 (3)
È
Sheldrick, G. M. (1997). SHELXL97. University of Gottingen, Germany.
Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.
St-Amant, A., Goh, S. K. & Gallant, R. T. (1998). DeFT2.2 Software Package.
University of Ottawa, Ontario, Canada.
C2ÐC1ÐC7ÐO1
172.2 (4)
C6ÐC1ÐC7ÐO1
6.5 (5)
Vosko, H., Wilk, L. & Nusair, M. (1980). Can. J. Phys. 58, 1200±1211.
ꢀ
Acta Cryst. (2000). C56, 354±355
A. Matos Beja et al. C7H5BrO2 355