Qingyan Chu et al. / Chinese Journal of Catalysis 39 (2018) 955–963
961
dustrial application.
Table 3
Comparison between the catalytic activity of SFS‐30 and that of other
reported catalysts for the alcoholysis of styrene oxide with MeOH.
References
MeOH/Strene Substrate/
Yield
Catalyst
oxide
Catalyst
(S/C)
Ref.
[1] X. Z. Liang, Chem. Eng. J., 2015, 264, 251–257.
[2] Q. Zhao, S. M. Meng, J. L. Wang, Z. P. Li, J. H. Liu, Y. Guo, Ceram. Int.,
2014, 40, 16183–16187.
[3] L. Qin, G. L. Zhang, Z. Fan, Y. J. Wu, X. W. Guo, M. Liu, Chem. Eng. J.,
2014, 244, 296–306.
[4] G. D. Yadav, S. B. Kamble, Appl. Catal. A, 2012, 433, 265–274.
[5] Z. K. Zhao, J. F. Ran, Appl. Catal. A, 2015, 503, 77–83.
[6] W. Li, K. B. Chi, H. Liu, H. J. Ma, W. Qu, C. X. Wang, G. Lv, Z. J. Tian,
Appl. Catal. A, 2017, 537, 59–65.
[7] Y. Fang, Y. Li, Q. Zhang, X. F. Sun, H. X. Fan, N. Xu, L. Gang, Carbohyd.
Polym., 2015, 131, 9–14.
[8] L. Gu, X. Chen, Y. Zhou, Q. L. Zhu, H. F. Huang, H. F. Lu, Chin. J. Catal.,
2017, 38, 607–615.
[9] F. H. Alhassan, U. Rashid, Y. H. Taufiq‐Yap, Fuel, 2015, 142, 38–45.
[10] H. J. Li, H. L. Song, L. W. Chen, C.G. Xia, Appl. Catal. B, 2015, 165,
466–476.
(%)
molar ratio
S2O82–‐Fe2O3/SBA‐15
[VIV(TPP)(OTf)2]
MS‐SO3H
Fe(Cp)2BF4
Fe(Cp)2PF6
ZrCl4
(NH4)2Ce(NO3)6
FeCl3
InCl3
7:1
98.8:1
37:1
160:1
24:1
6:1
100 This work
100
100
99
99
98
91
99
81
48
24
20
24
97
[37]
[38]
[39]
[39]
[39]
[39]
[39]
[39]
[40]
[40]
[40]
[40]
[40]
61.8:1
61.8:1
61.8:1
61.8:1
61.8:1
61.8:1
61.8:1
61.8:1
61.8:1
61.8:1
61.8:1
20:1
20:1
20:1
20:1
20:1
20:1
4.8:1
4.8:1
4.8:1
4.8:1
2.4:1
[Fe(BTC)]
[Cu3(BTC)2]
[Al2(BDC)3]
Iron citrate
Fe2(NO3)2·9H2O
[11] M. Dastkhoon, M. Ghaedi, A. Asfaram, A. Goudarzi, S. M.
Mohammadi, S. B. Wang, Ultrason Sonochem., 2017, 37, 94–105.
[12] R. Y. Li, F. P. Xiao, S. Amirkhanian, Z. P. You, J. Huang, Constr. Build.
Mater., 2017, 143, 633–648.
Sulfated Zr‐doped
[TiNbO5]‐ nanoplates
ZrO(NO3)2·nH2O
49.4:1
74:1
2.4:1
5:1
99
98
[41]
[42]
[13] R. R. Retamal Marín, F. Babick, M. Stintz, Powder Technol., 2017,
318, 451–458.
catalytic activity compared with other reported catalysts.
[14] F. Z. El Berrichi, C. Pham‐Huu, L. Cherif, B. Louis, M. J. Ledoux,
Catal. Commun., 2011, 12, 790–793.
3.4. Catalyst reusability
[15] M. Zare, Z. Moradi‐Shoeili, F. Ashouri, M. Bagherzadeh, Catal.
Commun., 2017, 88, 9–12.
[16] R. J. Kalbasi, M. Kolahdoozan, K. Shahabian, F. Zamani, Catal.
Commun., 2010, 11, 1109–1115.
[17] Y. Qin, Z. P. Qu, C. Dong, N. Huang, Chin. J. Catal., 2017, 38,
1603–1612.
[18] H. J. Shen, X. Y. Wu, D. H. Jiang, X. N. Li, J. Ni, Chin. J. Catal., 2017, 38,
1597–1602.
[19] K. N. Tayade, L. Y. Wang, S. S. Shang, W. Dai, M. Mishra, S. Gao, Chin.
J. Catal., 2017, 38, 758–766.
[20] Z. C. Miao, H. L. Song, H. H. Zhao, L. L. Xu, L. J. Chou, Catal. Sci.
Technol., 2014, 4, 838–850.
[21] O. V. Manoilova, R. Olindo, C. O. Areán, J. A. Lercher, Catal. Com‐
mun., 2007, 8, 865–870.
[22] P. F. Chen, M. X. Du, H. Lei, Y. Wang, G. L. Zhang, F. B. Zhang, X. B.
Fan, Catal. Commun., 2012, 18, 47–50.
Since the reusability is an important factor influencing the
practical applications of catalysts, we carried out a seven run
test over the SFS‐30 solid superacid under the optimized reac‐
tion conditions to evaluate the recyclability of the catalyst (Fig.
6(d)). The selectivity of alcoholysis remained at 100% in the
seven runs test over the SFS‐30. Compared with the fresh cata‐
lyst, a slow decline in the conversion was observed after seven
runs for the SFS‐30 catalyzed alcoholysis reaction; however,
the yield still remained high at 84.1%. The reason for the de‐
crease of the conversion after reuse was mainly the chemical
deactivation of SFS‐30 arising from active phase shedding. This
result indicated that the SFS‐30 exhibited a good stability and
can potentially be used in industrial applications.
[23] J. X. Wang, H. Pan, A. Q. Wang, X. Y. Tian, X. L. Wu, Y. Q. Wang, Catal.
Commun., 2015, 62, 29–33.
4. Conclusions
[24] H. Song, L. L. Zhao, N. Wang, Chin. J. Chem. Eng., 2016, 25, 74–78.
[25] G. P. Fan, M. Shen, Z. Zhang, F. R. Jia, J. Rare Earth, 2009, 27,
437–442.
[26] H. Song, L. L. Zhao, N. Wang, F. Li, Appl. Catal. A, 2016, 526, 37–44.
[27] Y. J. Wu, L. Qin, G. L. Zhang, L. Chen, X. W. Guo, M. Liu, Ind. Eng.
Chem. Res., 2013, 52, 16698–16708.
Well‐dispersed S2O82–‐Fe2O3/SBA‐15 mesostructures with
active nanoparticles, prepared by ultrasonic adsorption, pre‐
sent a larger specific surface area and larger mesopore volume
with surface acid sites than bulk S2O82–‐Fe2O3. According to our
experimental results, S2O82–‐Fe2O3/SBA‐15 with a 30% Fe2O3
loading exhibited the highest activity in the alcoholysis of sty‐
[28] B. B. Chang, J. Fu, Y. L. Tian, X. P. Dong, Appl. Catal. A, 2012, 437,
149–154.
rene oxide with MeOH compared with bulk S2O8 ‐Fe2O3 and
2
[29] W. J. Ding, W. S. Zhu, J. Xiong, Y. Lei, A. M. Wei, Z. Ming, H. M. Li,
Chem. Eng. J., 2015, 266, 213–221.
[30] P. M. Rao, A. Wolfson, S. Kababya, S. Vega, M. V. Landau, J. Catal.,
2005, 232, 210–225.
[31] S. C. Laha, P. Mukherjee, S. R. Sainkar, R. Kumar, J. Catal., 2002,
207, 213–223.
[32] S. G. Wang, K. K. Wang, C. Dai, H. Z. Shi, J. L. Li, Chem. Eng. J., 2015,
262, 897–903.
other reported Brönsted acids, Lewis acids and other catalysts.
Furthermore, this mesoporous superacid also exhibited a more
excellent highly efficient catalysis for alcoholysis with other
ROHs (R = C2H5‐C4H9) than bulk S2O82–‐Fe2O3 and better reusa‐
bility
of
the
catalyst.
Therefore,
mesoporous
S2O82–‐Fe2O3/SBA‐15 possessing highly efficient catalytic activ‐
ities, good stability and economy shows great promise for in‐