platform for simultaneous rapid detection of bacteria and safe
decontamination treatment, which may have attractive applications
in water purification and food safety.
We are thankful to National Science Foundation of China
(21021061, 81000662), the Fundamental Research Funds for the
Central Universities (2010121012), and Program for New Century
Excellent Talents in University (NCET-10-0709) for the financial
support.
Notes and references
1 J. R. McCarthy and R. Weissleder, Adv. Drug Delivery Rev., 2008, 60,
1241–1251.
2 J. Cheon and J. H. Lee, Acc. Chem. Res., 2008, 41, 1630–1640.
3 J. H. Gao, H. W. Gu and B. Xu, Acc. Chem. Res., 2009, 42, 1097–
1107.
4 R. L. Phillips, O. R. Miranda, C.-C. You, V. M. Rotello and
U. H. F. Bunz, Angew. Chem., Int. Ed., 2008, 47, 2590–2594.
5 K. El-Boubbou, C. Gruden and X. F. Huang, J. Am. Chem. Soc.,
2007, 129, 13392–13393.
6 H. Lee, T.-J. Yoon and R. Weissleder, Angew. Chem., Int. Ed., 2009,
48, 5657–5660.
7 J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri,
J. T. Ramirez and M. J. Yacaman, Nanotechnology, 2005, 16, 2346–
2353.
8 K. Chaloupka, Y. Malam and A. M. Seifalian, Trends Biotechnol.,
2010, 28, 580–588.
9 H. L. Cao, X. Y. Liu, F. H. Meng and P. K. Chu, Biomaterials, 2011,
32, 693–705.
10 J. Lellouche, E. Kahana, S. Elias, A. Gedanken and E. Banin,
Biomaterials, 2009, 30, 5969–5978.
11 K. R. Raghupathi, R. T. Koodali and A. C. Manna, Langmuir, 2011,
27, 4020–4028.
12 A. Travan, C. Pelillo, I. Donati, E. Marsich, M. Benincasa, T. Scarpa,
S. Semeraro, G. Turco, R. Gennaro and S. Paoletti,
Biomacromolecules, 2009, 10, 1429–1435.
13 C. D. Hillyer, C. D. Josephson, M. A. Blajchman, J. G. Vostal,
J. S. Epstein and J. L. Goodman, Hematology, 2003, 575–589.
14 M. Koopmans, C. H. von Bonsdorff, J. Vinje, D. de Medici and
S. Monroe, FEMS Microbiol. Rev., 2002, 26, 187–205.
15 M. Loretz, R. Stephan and C. Zweifel, Food Control, 2011, 22, 347–
359.
16 H. W. Gu, K. M. Xu, C. J. Xu and B. Xu, Chem. Commun., 2006, 941–
949.
17 J. H. Gao, L. Li, P. L. Ho, G. C. Mak, H. W. Gu and B. Xu, Adv.
Mater., 2006, 18, 3145–3148.
Fig. 4 The experimental results of bacterial elimination from contami-
nated drinking water. The agar plate images of water containing EGFP-
encoded E. coli ER2566 (107 CFU mLÀ1) (a) before and (b) after treat-
ment using Ag@Fe2O3–Glu conjugates. The agar plate images of water
containing E. coli O157:H7 (107 CFU mLÀ1) (d) before and (e) after
treatment using Ag@Fe2O3–Glu conjugates. The agar plate images of
precipitates (captured bacteria and aggregations of nanoparticles) after
magnetic separation from water containing (c) E. coli ER2566 and (f)
E. coli O157:H7 using Ag@Fe2O3–Glu conjugates. All samples were
incubated at 37 ꢀC for 24 h.
18 K. Gopal, S. S. Tripathy, J. L. Bersillon and S. P. Dubey, J. Hazard.
Mater., 2007, 140, 1–6.
left in the supernatant by ICP-AES (as low as the detection limit)
probably because the Ag nanoparticles along with iron oxide nano-
shells and Ag ions inside bacteria can be removed by the magnetic
separation, so the potential toxicity issue of Ag nanoparticles may be
absent after the process of decontamination treatment, which is an
additional advantage over other present antibacterial methods, such
as the use of Ag nanoparticles alone.36
19 S. Peng and S. H. Sun, Angew. Chem., Int. Ed., 2007, 46, 4155–
4158.
20 A. Cabot, V. F. Puntes, E. Shevchenko, Y. Yin, L. Balcells,
M. A. Marcus, S. M. Hughes and A. P. Alivisatos, J. Am. Chem.
Soc., 2007, 129, 10358–10360.
21 J. H. Gao, B. Zhang, X. X. Zhang and B. Xu, Angew. Chem., Int. Ed.,
2006, 45, 1220–1223.
22 J. H. Gao, G. L. Liang, B. Zhang, Y. Kuang, X. X. Zhang and B. Xu,
J. Am. Chem. Soc., 2007, 129, 1428–1433.
In summary, we have synthesized a uniform multifunctional
nanostructure, Ag@Fe2O3 yolk–shell nanoparticles, with a red-shif-
ted SPR absorption and strong magnetic contrast enhancement
effect. After the surface functionalization using glucose, the
Ag@Fe2O3–Glu conjugates exhibited both high capture efficiency of
bacteria because of specific targeting and strong magnetic properties
and potent antibacterial activity due to the Ag cores. The use of other
specific molecules (e.g., peptides and antibodies) is also feasible for
targeting modification. The investigation of such multifunctional
nanostructures may lead to the development of other types of
nanomaterials as novel antibacterial agents.37,38 The Ag@Fe2O3
yolk–shell nanostructures may offer a unique multifunctional
23 J. H. Gao, G. L. Liang, J. S. Cheung, Y. Pan, Y. Kuang, F. Zhao,
B. Zhang, X. X. Zhang, E. X. Wu and B. Xu, J. Am. Chem. Soc.,
2008, 130, 11828–11833.
24 E. V. Shevchenko, M. I. Bodnarchuk, M. V. Kovalenko,
D. V. Talapin, R. K. Smith, S. Aloni, W. Heiss and
A. P. Alivisatos, Adv. Mater., 2008, 20, 4323–4329.
25 Q. K. Ong, X.-M. Lin and A. Wei, J. Phys. Chem. C, 2011, 115, 2665–
2672.
26 S. Cheong, P. Ferguson, K. W. Feindel, I. F. Hermans,
P. T. Callaghan, C. Meyer, A. Slocombe, C.-H. Su, F.-Y. Cheng,
C.-S. Yeh, B. Ingham, M. F. Toney and R. D. Tilley, Angew.
Chem., Int. Ed., 2011, 50, 4206–4209.
27 K. Cheng, S. Peng, C. J. Xu and S. H. Sun, J. Am. Chem. Soc., 2009,
131, 10637–10644.
28 X. Z. Lin, X. Teng and H. Yang, Langmuir, 2003, 19, 10081–10085.
This journal is ª The Royal Society of Chemistry 2011
J. Mater. Chem., 2011, 21, 16344–16348 | 16347