10.1002/ejoc.201601572
European Journal of Organic Chemistry
FULL PAPER
In order to compute vertical electron affinities for 2a’ and 6a – 7a,
second order multiconfigurational perturbation theory (CASPT2) single–
point calculations (CASPT2/cc-pVTZ) using the B3LYP/cc–pVTZ
optimized geometries were also carried out for the states that are produced
when a single electron is added to the nonbonding -orbital of the
monoradical (3a – 5a), or one of the nonbonding -orbitals of the biradical
(2a’, 6a and 7a; singlet ground state).[55] Thus, these calculations were
carried out for (zwitterionic) singlet states (monoradicals) or doublet states
(biradical).[56] The vertical electron affinities of the mono- and biradicals
[22] M. Holčapek, R. Jirásko, M. Lísa, J. Chromatogr. A 2010, 1217, 3908–
3921.
[23] K. Levsen, H.-M. Schiebel, J. K. Terlouw, K. J. Jobst, M. Elend, A. Preiß,
H. Thiele, A. Ingendoh, J. Mass Spectrom. 2007, 42, 1024–1044.
[24] A.-C. Schmidt, R. Herzschuh, F.-M. Matysik, W. Engewald, Rapid
Commun. Mass Spectrom. 2006, 20, 2293–2302.
[25] P. Hemberger, G. da Silva, A. J. Trevitt, T. Gerber, A. Bodi, Phys. Chem.
Chem. Phys. 2015, 17, 30076–30083.
[26] N. M. Donahue, J. S. Clarke, J. G. Anderson, J. Phys. Chem. A 1998,
102, 3923–3933.
were computed either as [E0(monoradical; doublet state)]
–
[E0(monoradical + electron; singlet state)] or [E0(biradical; singlet state)] –
[E0(biradical + electron; doublet state)]. Note that because these are
vertical electron affinities, zero–point vibrational energies (ZPVEs) and
298 K thermal contributions to the enthalpy are not included. The CASPT2
calculations included all and nonbonding electrons and molecular
orbitals in the reference wave function. CASPT2 calculations were carried
out using the MOLCAS electronic structure program suite.[57]
[27] R. G. Keesee, A. W. Castleman, J. Phys. Chem. Ref. Data 1986, 15,
1011.
[28] J. Nakayama, T. Fukushima, E. Seki, M. Hoshino, J. Am. Chem. Soc.
1979, 101, 7684–7687.
[29] R. J. Bailey, H. Shechter, J. Am. Chem. Soc. 1974, 96, 8115–8116.
[30] J. Meinwald, S. Knapp, S. K. Obendorf, R. E. Hughes, J. Am. Chem. Soc.
1976, 98, 6643–6649.
[31] I. Novak, L. J. Harrison, W. Li, B. Kovač, J. Phys. Chem. A 2007, 111,
2619–2624.
[32] A. Zweig, A. K. Hoffmann, J. Org. Chem. 1965, 30, 3997–4001.
[33] T. Mizuta, Y. Iwakuni, T. Nakazono, K. Kubo, K. Miyoshi, J. Organomet.
Chem. 2007, 692, 184–193.
Acknowledgements
This material is based upon work supported by the National
Science Foundation under Grant Number CHE-1464712. We
thank Dr. Phillip Fanwick and Dr. Matthias Zeller for assistance
with X-ray crystallography.
[34] H. Roohi, F. Deyhimi, A. Ebrahimi, J. Mol. Struct. Theochem 2001, 540,
287–294.
[35] I. Yavari, D. Nori-Shargh, J. Phys. Org. Chem. 1995, 8, 696–698.
[36] V. V. Mezheritskii, in Adv. Heterocycl. Chem., Elsevier, 2007, pp. 1–25.
[37] E. Ayers, British Patent 394511 (June 29, 1933).
[38] A. Gordon, J. Org. Chem. 1970, 35, 4261–4262.
[39] D. C. De Jongh, G. N. Evenson, Tetrahedron Lett. 1971, 12, 4093–4096.
[40] L. M. Kirkpatrick, N. R. Vinueza, B. J. Jankiewicz, V. A. Gallardo, E. F.
Archibold, J. J. Nash, H. I. Kenttämaa, Chem. – Eur. J. 2013, 19, 9022–
9033.
Keywords: radical reactivity · reaction mechanisms · oxygen-
peribridged quinoline · gas-phase ion-molecule reactions
[1]
[2]
[3]
[4]
[5]
[6]
W. Sander, Acc. Chem. Res. 1999, 32, 669–676.
H. H. Wenk, M. Winkler, W. Sander, Angew. Chem. 2003, 42, 502–528.
K. C. Nicolaou, W. M. Dai, Angew. Chem. 1991, 30, 1387–1416.
H. Pellissier, M. Santelli, Tetrahedron 2003, 59, 701–730.
K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921–2990.
W. Liu, S. D. Christenson, S. Standage, B. Shen, Science 2002, 297,
1170–1173.
[41] S. Gronert, J. Am. Soc. Mass Spectrom. 1998, 9, 845–848.
[42] T. Su, W. J. Chesnavich, J. Chem. Phys. 1982, 76, 5183–5185.
[43] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.
Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery,
Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N.
Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.
Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M.
Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A.
D. Daniels, Ö Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J.
Fox, Gaussian, Inc., Wallingford CT, 2009.
[7]
[8]
[9]
S. G. Weirschke, J. J. Nash, R. R. Squires, J. Am. Chem. Soc. 1993, 115,
11958–11967.
R. Hoffmann, A. Imamura, W. J. Hehre, J. Am. Chem. Soc. 1968, 90,
1499–1509.
P. G. Wenthold, R. R. Squires, W. C. Lineberger, J. Am. Chem. Soc.
1998, 120, 5279–5290.
[10] P. E. Williams, B. J. Jankiewicz, L. Yang, H. I. Kenttämaa, Chem. Rev.
2013, 113, 6949–6985.
[11] G. Wittig, Angew. Chem. Int. Ed. Engl. 1965, 4, 731–737.
[12] R. G. Miller, M. Stiles, J. Am. Chem. Soc. 1963, 85, 1798–1800.
[13] A. T. Bowne, T. A. Christopher, R. H. Levin, Tetrahedron Lett. 1976, 17,
4111–4114.
[44] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007–1023.
[45] A. D. Becke, Phys. Rev. A 1988, 38, 3098–3100.
[46] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
[47] C. J. Cramer, S. Debbert, Chem. Phys. Lett. 1998, 287, 320–326.
[48] J. Gräfenstein, E. Kraka, D. Cremer, Chem. Phys. Lett. 1998, 288, 593–
602.
[14] B. J. Jankiewicz, A. Adeuya, M. J. Yurkovich, N. R. Vinueza, S. J.
Gardner, M. Zhou, J. J. Nash, H. I. Kenttämaa, Angew. Chem. Int. Ed.
2007, 46, 9198–9201.
[15] B. J. Jankiewicz, J. N. Reece, N. R. Vinueza, J. J. Nash, H. I. Kenttämaa,
Angew. Chem. Int. Ed. 2008, 47, 9860–9865.
[49] J. Gräfenstein, A. M. Hjerpe, E. Kraka, D. Cremer, J. Phys. Chem. A
2000, 104, 1748–1761.
[16] V. A. Gallardo, B. J. Jankiewicz, N. R. Vinueza, J. J. Nash, H. I.
Kenttämaa, J. Am. Chem. Soc. 2012, 134, 1926–1929.
[17] J. Gao, B. J. Jankiewicz, J. Reece, H. Sheng, C. J. Cramer, J. J. Nash,
H. I. Kenttämaa, Chem. Sci. 2014, 5, 2205–2215.
[50] T. D. Crawford, E. Kraka, J. F. Stanton, D. Cremer, J. Chem. Phys. 2001,
114, 10638–10650.
[51] V. Polo, E. Kraka, D. Cremer, Theor. Chem. Acc. 2002, 107, 291–303.
[52] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
[53] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980,
72, 650–654.
[18] P. F. Britt, A. I. Buchanan, E. A. Malcolm, J. Org. Chem. 1995, 60, 6523–
6536.
[19] S. E. Tichy, E. D. Nelson, F. S. Amegayibor, H. I. Kenttämaa, J. Am.
Chem. Soc. 2004, 126, 12957–12967.
[54] M. N. Glukhovtsev, A. Pross, M. P. McGrath, L. Radom, J. Chem. Phys.
1995, 103, 1878–1885.
[20] N. R. Vinueza, E. F. Archibold, B. J. Jankiewicz, V. A. Gallardo, S. C.
Habicht, M. S. Aqueel, J. J. Nash, H. I. Kenttämaa, Chem. – Eur. J. 2012,
18, 8692–8698.
[55] Note that, for these calculations, we are computing the vertical electron
affinity of the radical site, not the vertical electron affinity of the molecule.
[56] Because the mono- and biradicals studied here contain a formal positive
charge on the nitrogen atom, the states that are produced when an
[21] S. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255–263.
This article is protected by copyright. All rights reserved.