Communication
ChemComm
6 D. Bethell, D. H. Kang and G. J. Zerbi, J. Chem. Soc., Perkin Trans. 2,
1996, 1081–1086.
7 V. A. Sauro and M. S. Workentin, J. Org. Chem., 2001, 66, 831–838.
8 J. Hai-zhen, R. Zhong-jiao, W. Wen and S. Long-gang, J. Shanghai
Univ., 2005, 9, 369–371.
9 J. Ardaraviciene, B. Barvainiene, T. Malinauskas, V. Jankauskas,
K. Arlauskas and V. Getautis, React. Funct. Polym., 2011, 71, 1016–1022.
10 V. S. Vyas, F. Haase, L. Stegbauer, G. Savasci, F. Podjaski,
C. Ochsenfeld and B. V. Lotsch, Nat. Commun., 2015, 6, 8508.
11 S. Dalapati, S. Jin, J. Gao, Y. Xu, A. Nagai and D. Jiang, J. Am. Chem.
Soc., 2013, 135, 17310–17313.
12 (a) S. B. Alahakoon, C. M. Thompson, A. X. Nguyen, G. Occhialini,
G. T. McCandless and R. A. Smaldone, Chem. Commun., 2016, 52,
2843–2845; (b) Z. Li, X. Feng, Y. Zou, Y. Zhang, H. Xia, X. Liu and
Y. Mu, Chem. Commun., 2014, 50, 13825–13828; (c) A. R. Kennedy,
K. G. Brown, D. Graham, J. B. Kirkhouse, M. Kittner, C. Major,
C. J. McHugh, P. Murdoch and W. E. Smith, New J. Chem., 2005, 29,
826–832.
13 (a) W. Han, G. Zhang, G. Li and H. Huang, Org. Lett., 2014, 16,
3532–3535; (b) L. Qiu, D. Huang, G. Xu, Z. Dai and J. Sun, Org. Lett.,
2015, 17, 1810–1813.
Scheme 3 Proposed mechanism for the direct synthesis of ketazines
using ruthenium pincer complex 1.
14 (a) V. M. Kolb, A. C. Kuffel, H. O. Spiwek and T. E. Janota, J. Org.
Chem., 1989, 54, 2771–2775; (b) H. M. Nanjundaswamy and
M. A. Pasha, Synth. Commun., 2006, 36, 3161–3165.
15 (a) S. N. Shah and N. K. Chudgar, Molecules, 2000, 5, 657–664;
(b) G. S. Singh and K. Kopo, Indian J. Chem., 2002, 41, 1736–1737;
(c) H. Loghmani-Khouzami, A. Minaeifar and R. Gawinecki, J. Mol.
Struct., 2013, 1032, 138–146; (d) D. R. Tolentino, M. Liqun Zin and
G. Bertrand, Chem. – Asian J., 2015, 10, 2139–2142.
16 (a) M. Regitz, D. Stadler, H. Schwall, A. Liedhegener, H. J. Geelhaar,
F. Menz, J. Hocker, J. Ru¨ter and W. Anschu¨tz, Angew. Chem., Int. Ed.
Engl., 1967, 6, 733–749; (b) J. M. Hopkins, M. Bowdridge, K. N.
Robertson, T. S. Cameron, H. A. Jenkins and J. A. C. Clyburne, J. Org.
Chem., 2001, 66, 5713–5716; (c) K. Banert, S. Richter, D. Schaarschmidt
and H. Lang, Angew. Chem., Int. Ed., 2013, 52, 3499–3502; (d) Y. F.
Wang, G. H. Lonca and S. Chiba, Angew. Chem., Int. Ed., 2014, 53,
1067–1071.
17 For reviews, see: (a) R. H. Crabtree, Chem. Rev., 2017, 117,
9228–9246; (b) A. M. Faisca Phillips, A. J. L. Pombeiro and M. N.
Kopylovich, ChemCatChem, 2017, 9, 217–246; (c) J. R. Khusnutdinova
and D. Milstein, Angew. Chem., Int. Ed., 2015, 54, 12236–12273;
(d) C. Gunanathan and D. Milstein, Chem. Rev., 2014, 114,
12024–12087; (e) C. Gunanathan and D. Milstein, Science, 2013,
341, 1229712; ( f ) S. Bahn, S. Imm, L. Neubert, M. Zhang,
H. Neumann and M. Beller, ChemCatChem, 2011, 3, 1853–1864;
(g) G. E. Dobereiner and R. H. Crabtree, Chem. Rev., 2010, 110,
681–703; (h) A. J. A. Watson and J. M. J. Williams, Science, 2010, 329,
635–636.
and ketone intermediates. The reactions follow acceptorless dehydro-
genation of secondary alcohols via amine–amide metal–ligand
cooperation in catalyst 1 to provide ketones followed by a con-
secutive condensation reaction with hydrazine hydrate to provide
the corresponding ketazine products. Remarkably, H2O and H2 are
the only byproducts in this environmentally benign catalytic
transformation.
We thank SERB New Delhi (EMR/2016/002517), DAE and
NISER for financial support. J. K. thanks DST for an INSPIRE
fellowship. S. T. thanks UGC for a research fellowship. We are
thankful to Prof. Basker Sundararaju for his kind support and
fruitful discussions. We thank P. Kalita for his kind help.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) J. Safari and S. Gandomi-Ravandi, RSC Adv., 2014, 4,
46224–46249; (b) L. M. Blair and J. Sperry, J. Nat. Prod., 2013, 76, 18 (a) M. Chakraborty, D. Sengupta, T. Saha and S. Goswami, J. Org.
794–812.
Chem., 2018, 83, 7771–7778; (b) J. O. Bauer, G. Leitus, Y. Ben-David
and D. Milstein, ACS Catal., 2016, 6, 8415–8419.
2 (a) A. I. Khodair and P. A. Bertrand, Tetrahedron, 1998, 54, 4859–4872;
(b) K. Veena, M. Ramaiah, K. Shashikaladevi, T. S. Avinash and 19 (a) S. Thiyagarajan and C. Gunanathan, ACS Catal., 2017, 7,
V. P. Vaidya, J. Chem. Pharm. Res., 2011, 3, 130–135.
3 V. M. Kolb, D. H. Hua and W. L. Duax, J. Org. Chem., 1987, 52,
3003–3010.
5483–5490; (b) S. Thiyagarajan and C. Gunanathan, ACS Catal.,
2018, 8, 2473–2478; (c) S. Thiyagarajan and C. Gunanathan, J. Am.
Chem. Soc., 2019, 141, 3822–3827.
4 (a) G. W. Goodall and W. Hayes, Chem. Soc. Rev., 2006, 35, 280–312; 20 (a) V. Krishnakumar and C. Gunanathan, Chem. Commun., 2018, 54,
(b) Y. Xiong, S. Yao and M. Driess, Organometallics, 2010, 29, 987–990;
(c) T. Wagner-Jauregg, Synthesis, 1976, 349–373; (d) R. Huisgen, Angew.
Chem., Int. Ed. Engl., 1968, 7, 321–328.
8705–8708; (b) B. Chatterjee and C. Gunanathan, Chem. Commun.,
2016, 52, 4509–4512; (c) B. Chatterjee and C. Gunanathan, Org. Lett.,
2015, 17, 4794–4797.
5 (a) G. S. Chen, J. K. Wilbur, C. L. Barnes and R. Glaser, J. Chem. Soc., 21 V. Krishnakumar, B. Chatterjee and C. Gunanathan, Inorg. Chem.,
Perkin Trans. 2, 1995, 2311–2317; (b) R. Glaser, G. S. Chen, 2017, 56, 7278–7284.
M. Anthamatten and C. L. Barnes, J. Chem. Soc., Perkin Trans. 2, 22 (a) A. Lendl, I. Werner, S. Glasl, C. Kletter, P. Mucaji, A. Presser,
1995, 1449–1458; (c) M. Revanasiddappa, T. Suresh, S. Khasim,
S. C. Raghavendra, C. Basavaraja and S. D. Angadi, E-J. Chem.,
2008, 5, 395–403.
G. Reznicek, J. Jurenitsch and D. W. Taylor, Phytochemistry, 2005, 66,
2381–2387; (b) A. H. Ammar, B. A. El-Sayed and E. A. El-Sayad,
J. Mater. Sci., 2002, 37, 3255–3260.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019