ACCEPTED MANUSCRIPT
(2004) 915–919. doi:10.1016/j.jpba.2004.08.021.
[31] Y. Yue, X. Chen, J. Qin, X. Yao, A study of the binding of C.I. Direct Yellow 9 to human
serum albumin using optical spectroscopy and molecular modeling, Dye. Pigment. 79
(2008) 176–182. doi:10.1016/j.dyepig.2008.02.008.
[32] H. Liu, Z. Xu, X. Liu, P. Xi, Z. Zeng, Analysis of Binding Interaction between Bovine
Serum Albumin and the Cobalt(II) Complex with salicylaldehyde-2-phenylquinoline-4-
carboylhydrazone, Chem. Pharm. Bull. (Tokyo). 57 (2009) 1237–1242.
doi:10.1248/cpb.57.1237.
[33] A. Papadopoulou, R.J. Green, R.A. Frazier, Interaction of Flavonoids with Bovine Serum
Albumin: A Fluorescence Quenching Study, J. Agric. Food Chem. 53 (2005) 158–163.
doi:10.1021/jf048693g.
[34] J. Min, X. Meng-Xia, Z. Dong, L. Yuan, L. Xiao-Yu, C. Xing, Spectroscopic studies on
the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin,
J. Mol. Struct. 692 (2004) 71–80. doi:10.1016/j.molstruc.2004.01.003.
[35] N. Wang, S. Ku, P. Yu, B. Zhao, L. Ye, Spectroscopic Studies on the Interaction of
Efonidipine with Bovine Serum Albumin, in: 2008 2nd Int. Conf. Bioinforma. Biomed.
Eng., IEEE, 2008: pp. 261–264. doi:10.1109/ICBBE.2008.68.
[36] H. Ye, B. Qiu, Z. Lin, G. Chen, Fluorescence spectrometric study on the interaction of
tamibarotene with bovine serum albumin, Luminescence. 26 (2011) 336–341.
doi:10.1002/bio.1234.
[37] X.-L. Han, P. Mei, Y. Liu, Q. Xiao, F.-L. Jiang, R. Li, Binding interaction of quinclorac
with bovine serum albumin: A biophysical study, Spectrochim. Acta Part A Mol. Biomol.
Spectrosc. 74 (2009) 781–787. doi:10.1016/j.saa.2009.08.018.
[38] H. Zhao, M. Ge, Z. Zhang, W. Wang, G. Wu, Spectroscopic studies on the interaction
between riboflavin and albumins, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.
(2006). doi:10.1016/j.saa.2005.12.038.
[39] F. Zhang, M.W.A. Skoda, R.M.J. Jacobs, R.A. Martin, C.M. Martin, F. Schreiber, Protein
interactions studied by SAXS: Effect of ionic strength and protein concentration for BSA
in aqueous solutions, J. Phys. Chem. B. (2007). doi:10.1021/jp0649955.
[40] G. Devagi, A. Mohankumar, G. Shanmugam, S. Nivitha, F. Dallemer, P. Kalaivani, P.
Sundararaj, R. Prabhakaran, Organoruthenium(II) Complexes Ameliorates Oxidative
Stress and Impedes the Age Associated Deterioration in Caenorhabditis elegans through
JNK-1/DAF-16 Signalling, Sci. Rep. 8 (2018) 7688. doi:10.1038/s41598-018-25984-7.
[41] G. Devagi, G. Shanmugam, A. Mohankumar, P. Sundararaj, F. Dallemer, P. Kalaivani, R.
Prabhakaran, Caenorhabditis elegans as a model for exploring the efficacy of synthesized
organoruthenium complexes for aging and Alzheimer’s disease a neurodegenerative
disorder: A systematic approach, J. Organomet. Chem. 838 (2017) 12–23.
doi:10.1016/j.jorganchem.2017.03.023.
[42] G.J. Lithgow, G.A. Walker, Stress resistance as a determinate of C. elegans lifespan,
Mech. Ageing Dev. (2002). doi:10.1016/S0047-6374(01)00422-5.
[43] N. Ishii, M. Fujii, P.S. Hartman, M. Tsuda, K. Yasuda, N. Senoo-Matsuda, S. Yanase, D.
Ayusawa, K. Suzuki, A mutation in succinate dehydrogenase cytochrome b causes
oxidative stress and ageing in nematodes, Nature. 394 (1998) 694–697.
doi:10.1038/29331.
[44] Y.-B. Yu, L. Dosanjh, L. Lao, M. Tan, B.S. Shim, Y. Luo, Cinnamomum cassia Bark in
Two Herbal Formulas Increases Life Span in Caenorhabditis elegans via Insulin
Signaling and Stress Response Pathways, PLoS One.
doi:10.1371/journal.pone.0009339.
5
(2010) e9339.
[45] G.J. Lithgow, T.M. White, S. Melov, T.E. Johnson, Thermotolerance and extended life-
span conferred by single-gene mutations and induced by thermal stress., Proc. Natl. Acad.
25