C O M M U N I C A T I O N S
Figure 4. Ratio fluorescence (F597/F697) images of Cd2 in DC cells (Leica
TCS-SP2 confocal fluorescence microscope, 20× objective lens). (a) DC
cells incubated with 1 (5 µM). (b) DC cells incubated with 1 and then further
incubated with 5 µM CdCl2.
+
Figure 2. The ratio fluorescence responses (F597/F697) of sensor 1 containing
distinguish Cd2+ from Zn2+ and especially it can be used in both
general fluorescence microscopy and ratiometric fluorescence
microscopy.
2
+
2
50 µM Cd to the selected metal ions (250 µM) in Tris-HCl (0.01 M)
solution (acetone/water, 9/1, v/v, pH 7.4). The concentration of 1 was 5
µM, and excitation wavelength was 580 nm.
Acknowledgment. This work was supported by the National
Science Foundation of China (20376010 and 20472012).
Supporting Information Available: Synthesis, experimental de-
tails, and additional spectroscopic data. This material is available free
of charge via the Internet at http://pubs.acs.org.
References
Figure 3. Confocal fluorescence images of Cd2+ in DC cells. The excited
light is 543 nm, and the emission is centered at 597 ( 15 nm (Leica TCS-
SP2 confocal fluorescence microscope, 20× objective lens). (a) Bright-
field transmission image of DC cells incubated with 1 (5 µM). (b)
Fluorescence image of DC cells incubated with 1 (5 µM). (c) Fluorescence
image of DC cells incubated with 1 for 30 min, washed three times, and
then further incubated with 5 µM CdCl2 for 30 min.
(
1) Chaney, R. L.; Ryan, J. A.; Li, Y.-M.; Brown, S. L. In Cadmium in Soils
and Plants; McLaughlin, M. J., Singh, B. R., Eds.; Kluwer: Boston, 1999;
pp 219-256.
(
(
(
2) Dobson, S. Cadmium: EnVironmental Aspects; World Health Organiza-
tion: Geneva, 1992.
3) Friberg, L.; Elinger, C. G.; Kjellstr o¨ m, T. Cadmium; World Health
Organization: Geneva, 1992.
4) (a) Qi, X.; Jun, E. J.; Xu, L.; Kim, S.-J.; Joong Hong, J. S.; Yoon, Y. J.;
Yoon, J. J. Org. Chem. 2006, 71, 2881-2884. (b) Nolan, E. M.; Lippard,
S. J. J. Am. Chem. Soc. 2003, 125, 14270-14271. (c) Yoon, S.; Albers,
A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16030-
16031. (d) Hirano, T.; Kikuchi, K.; Urano, Y.; Nagano, T. J. Am. Chem.
Soc. 2002, 124, 6555-6562. (e) Wu, Y.; Peng, X.; Guo, B.; Fan, J.; Zhang,
Z.; Wang, J.; Cui, A.; Gao, Y. Org. Biomol. Chem. 2005, 3, 1387-1392.
(
Figures S7 and S8). To the best of our knowledge, this is the first
2+
2+
example of fluorescent Cd sensors which can distinguish Cd
from Zn2+ with both emission shift and fluorescence intensity.
Fluorescent sensors based on electron donor/acceptor are usually
disturbed by a proton in the detection of metal ions. 1 displays
intense fluorescence at pH < 4. When the pH is >5.5, however,
the fluorescence intensities are very low and remain constant. The
(5) (a) Huston, M. E.; Engleman, C.; Czarnik, A. W. J. Am. Chem. Soc. 1990,
12, 7054-7056. (b) Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N.
1
Eur. J. Inorg. Chem. 1999, 3, 455-460. (c) Prodi, L.; Montalti, M.;
Zaccheroni, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. Tetrahedron
Lett. 2001, 42, 2941-2944. (d) Choi, M.; Kim, M.; Lee, K. D.; Han, K.
N.; Yoon, I. A.; Chung, H. J.; Yoon, J. Org. Lett. 2001, 3, 3455-3457.
(e) Charles, S.; Yunus, S.; Dubois, F.; Vander Donckt, E. Anal. Chim.
Acta 2001, 440, 37-43. (f) Marino, J. E.; Resendiz, J. C.; Disteldorf, N.
H.; Fischer, S.; Stang, P. J. Org. Lett. 2004, 6, 651-653. (g) Bronson, R.
T.; Michaelis, D. J.; Lamb, R. D.; Husseini, G. A.; Farnsworth, P. B.;
Linford, M. R.; Izatt, R. M.; Bradshaw, J. S.; Savage, P. B. Org. Lett.
a
pK is 4.1 from the sigmoidal curve (Figure S9). Therefore, sensor
1
can be used in the aqueous media with pH > 5.5.
To determine the cell permeability of 1, PC12 cells were
incubated with 1 (5 µM). The increases in the fluorescence intensity
in living cells were observed upon addition of Cd2+ (5 µM) into
the medium and incubation for 0.5 h at 37 °C. The images were
obtained on a Nikon Eclipse TE2000-5 fluorescence microscope
excited by its green light (510-560 nm) (Figure S10). Although
the microscope recorded a wide emission wavelength range (580-
2005, 7, 1105-1108.
(
(
(
6) (a) Cotton, F. A.; Wilkinson, G. AdVances in Inorganic Chemistry, 5th
ed.; Wiley: New York, 1988; pp 957-1358. (b) Dakternieks, D. Coord.
Chem. ReV. 1990, 98, 279-294.
7) (a) Gunnlaugsson, T.; Lee, T. C.; Parkesh, R. Org. Lett. 2003, 5, 4065-
4068. (b) Gunnlaugsson, T.; Lee, T. C.; Parkesh, R. Tetrahedron 2004,
60, 11239-11249.
8) (a) de Silva, A. P.; Nimal Gunaratne, H. Q.; Gunnlaugsson, T.; Huxley,
7
00 nm), the penetrating ability and the intracellular Cd2+ sensing
A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. ReV. 1997,
97, 1515-1566. (b) Valeur, B.; Leray, I. Coord. Chem. ReV. 2000, 205,
3-40. (c) Grabowski, Z. R.; Rotkiewicz, K. Chem. ReV. 2003, 103, 3899-
4031.
of 1 are very clear.
Similarly to PC12 cells, DC cells were incubated with 1 (5 µM)
and then further incubated with 5 µM CdCl
2
. The fluorescence
(9) (a) Maruyama, S.; Kikuchi, K.; Hirano, T.; Urano, Y.; Nagano, T. J. Am.
Chem. Soc. 2002, 124, 10650-10651. (b) Taki, M.; Wolford, J. L.;
O’Halloran, T. V. J. Am. Chem. Soc. 2004, 126, 712-713. (c) Xu, Z.;
Qian, X.; Cui, J. Org. Lett. 2005, 7, 3029-3032. (d) Coskun, A.; Ankara,
E. U. J. Am. Chem. Soc. 2005, 127, 10464-10465. (e) Baruah, M.; Qin,
W.; Vallee, R. A. L.; Beljonne, D.; Rohand, T.; Dehaen, W.; Boens, N.
Org. Lett. 2005, 7, 4377-4380. (f) Badugu, R.; Lakowicz, J. R.; Geddes,
C. D. J. Am. Chem. Soc. 2005, 127, 3635-3641. (g) Kiyose, K.; Kojima,
H.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2006, 128, 6548-6549.
(10) (a) Rurack, K.; Kollmannsberger, M.; Daub, J. Angew. Chem., Int. Ed.
images of intracellular Cd2 were observed under a Leica TCS-
SP2 confocal microscope. The single-channel confocal fluorescence
at 597 ( 15 nm (Figure 3) shows more clear images than that of
a general microscope (Figure S10). The double-channel fluorescence
images at 597 ( 15 and 697 ( 15 nm are shown in Figure S11.
Analyzed by MetaFluor software (Universal Imaging Corp.), ratio
fluorescence images were obtained (Figure 4).
+
2
001, 40, 385-387. (b) Coskun, A.; Deniz, E.; Akkaya, E. U. Org. Lett.
2
005, 7, 5187-5189.
The results suggest that 1 can be used to image intracellular Cd2+
in living cells in both general fluorescence and ratio fluorescence
ways. It should therefore be potentially useful for the study of the
toxicity or bioactivity of Cd2+ in living cells.
(
11) Peng, X.; Song, F.; Lu, E.; Wang, Y.; Zhou, W.; Fan, J.; Gao, Y. J. Am.
Chem. Soc. 2005, 127, 4170-4171.
(
12) Karolin, J.; Johansson, L. B.-A.; Strandberg, L.; Ny, T. J. Am. Chem.
Soc. 1994, 116, 7801-7806.
(13) Zheng, Y.; Orbulescu, J.; Ji, X.; Andreopoulos, F. M.; Pham, s. M.;
Leblanc, R. M. J. Am. Chem. Soc. 2003, 125, 2680-2686.
In conclusion, we have reported that fluorescent sensor 1 can
be used for selective imaging of Cd2 in living cells. It can
+
JA0643319
J. AM. CHEM. SOC.
9
VOL. 129, NO. 6, 2007 1501