272
Vol. 58, No. 2
NH2). 13C-NMR (75 MHz, DMSO-d6) dC (ppm): 49.28, 67.30, 93.23 (C4,
C3, C7), 112.61 (CN), 116.46 (CN), 141.20 (C5), 160.91, 167.01,
172.00(C6, C2, C9). MS, m/z (%): 228 (Mꢂ, 20), 184 (40), 158 (100), 132
(55), 106 (30), 90 (35), 43 (60). Anal. Calcd for C10H4N4O3: C, 52.64; H,
1.77; N, 24.56. Found: C, 52.54; H, 1.73; N, 24.58.
Table 1. Effect of Solvent on the Reaction Times and Yieldsa)
Preparation of PF-MCM-41
A
solution of 4-methyl-pyridine
(8.0 mmol) in THF (40 ml) was added to a THF solution of lithium diiso-
propylamine (8.0 mmol). After 2 h the brown solution was cooled to ꢀ20 °C
and then MCM-41 grafted with chloropropylsilyl groups was added (2.0 g).
After 72 h, the reaction mixture was treated with the mix of ice and water.
The solution was filtered off and the pale solid washed three times with
15 ml aliquots of ethanol, three times with 15 ml aliquots of diethyl ether,
and dried under reduced pressure at room temperature for 48 h. Desired PF-
MCM-41 was obtained quantitatively.
Entry
Solvent
Time
Yield (%)
1
2
3
4
5
6
H2O
EtOH
CH3CN
C6H5CH3
n-Hexan
CH2Cl2
16 h
16 h
16 h
16 h
16 h
15 min
70
60
55
50
40
All of the products are known compounds (except product 3a), which
90, 92, 90, 92, 94
1
were characterized by IR, H, 13C-NMR, and mass spectra data. Their melt-
ing points were compared with literature reports, too.23)
a) Dimedone (1.1 mmol), tetracyanoethylen (1.0 mmol) in the presence of PF-
MCM-41 (0.01 g) at room temperature in various solvents.
Acknowledgement We gratefully acknowledge the financial support
from the Research Council of Shahid Beheshti University.
Table 2. Recycle of Catalysta)
References
Cycle
PF-MCM-41 (g)
Yield (%)
1) Andreani L. L., Lapi E., Boll. Chim. Farm., 99, 583—586 (1960).
2) Bonsignore L., Loy G., Secci D., Calignano A., Eur. J. Med. Chem.,
28, 517—520 (1993).
3) Witte E. C., Neubert P., Roesch A., Ger. Offen. DE, 3427985 (1986).
4) Zhang Y. L., Chen B. Z., Zheng K. Q., Xu M. L., Zhang L. Z., Lei X.
H., Acta Pharm. Sin., 17, 17—22 (1982).
1
2
3
4
0.019
0.018
0.018
0.014
93
91
92
92
5) Konkoy C. S., Fick D. B., Cai S. X., Lan N. C., Keana J. F. W., PCT
Int. Appl., 0075123 (2000).
a) Dimedone (1.1 mmol), tetracyanoethylen (1.0 mmol) in the presence of PF-
MCM-41 (mentioned in table) at room temperature in CH2Cl2.
6) Ciller J. A., Martin N., Seoane C., Soto J. L., J. Chem. Soc., Perkin
Trans. 1, 1985, 2581—2584 (1985).
7) Hatakeyama S., Ochi N., Numata H., Takano S., J. Chem. Soc., Chem.
Commun., 1988, 1202—1204 (1988).
8) Dhar D. N., Chem. Rev., 67, 611—622 (1967).
9) Fatiadi A. J., Synthesis, 1987, 749—789 (1987).
10) Fatiadi A. J., Synthesis, 1987, 959—978 (1987).
11) Zheng S., Gao L., Guo J., J. Solid State Chem., 152, 447—452 (2000).
12) Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T.,
Schmitt K. D., Chu C. T. W., Olson D. H., Sheppard E. W., McCullen
S. B., Higgins J. B., Schlenker J. L., J. Am. Chem. Soc., 114, 10834—
10843 (1992).
13) Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S.,
Nature (London), 359, 710—712 (1992).
14) Song C. E., Lee S. G., Chem. Rev., 102, 3495—3524 (2002).
15) Deschler U., Kleinschmit P., Panster P., Angew. Chem., Int. Ed. Engl.,
25, 236—252 (1986).
16) Allum K. G., Hancock R. D., Howell I. V., Lester T. E., McKenzie S.,
Pitkethly R. C., Robinson P. J., J. Organomet. Chem., 107, 393—405
(1976).
17) Allum K. G., Hancock R. D., Howell I. V., McKenzie S., Pitkethly R.
C., Robinson P. J., J. Organomet. Chem., 87, 203—216 (1975).
18) Shaabani A., Rezayan A. H., Ghasemi S., Sarvary A., Tetrahedron
Lett., 50, 1456—1458 (2009).
portant characteristics of heterogeneous catalysts. The sepa-
ration of PF-MCM-41 from the reaction medium easily was
carried out by filtration. After drying, it was reused for sub-
sequent reactions (Table 2). Thus, this process could be also
interesting for large-scale synthesis.
Conclusions
In conclusion, we have developed a rapid and very effi-
cient pyridine-functionalized MCM-41-catalyzed approach
for the synthesis of pyran annulated heterocyclic ring sys-
tems under mild reaction conditions with excellent yields.
The present method has the advantages that not only the cat-
alyst can be recycled and reused for several times without
loss of performance, but also the substances can be mixed
without any modification. The work-up procedure is very
simple and the products do not require further purification.
The simplicity of the present procedure makes it an interest-
ing alternative to other approaches.
Experimental
19) Shaabani A., Rezayan A. H., Heidary M., Sarvary A., Catal.
Commun., 10, 129—131 (2008).
20) Shaabani A., Rezayan A. H., Heidary M., Sarvary A., Chem. Pharm.
Bull., 56, 1480—1482 (2008).
21) Shaabani A., Rezayan A. H., Rahmati A., Sarvary A., Synlett, 2007,
1458—1460 (2007).
22) Shaabani A., Rezayan A. H., Sarvary A., Khavasi H. R., Tetrahedron
Lett., 49, 1469—1472 (2008).
23) Shaabani A., Rezayan A. H., Sarvary A., Rahmati A., Khavasi H. R.,
Catal. Commun., 9, 1082—1086 (2008).
24) Shaabani A., Sarvary A., Rezayan A. H., Keshipour S., Tetrahedron,
65, 3492—3495 (2009).
25) Shaabani A., Soleimani E., Rezayan A. H., Sarvary A., Khavasi H. R.,
Org. Lett., 10, 2581—2584 (2008).
26) Kuhn F. E., Lopes A. D., Santos A. M., Herdtweck E., Haider J. J.,
Romao C. C., Santos A. G., J. Mol. Catal. A: Chem., 151, 147—160
(2000).
Techniques and Materials Melting points were measured on an Elec-
trothermal 9100 apparatus and are uncorrected. Mass spectra were recorded
on a FINNIGAN-MAT 8430 mass spectrometer operating at an ionization
potential of 70 eV. IR spectra were recorded on a Shimadzu IR-470 spec-
trometer. 1H- and 13C-NMR spectra were recorded on a BRUKER DRX-300
AVANCE spectrometer at 300.13 and 75.47 MHz. NMR spectra were ob-
tained in DMSO-d6. The chemicals used, were purchased from Merck and
Fluka Chemical Companies.
Typical Experimental Procedure. Preparation of 2-Amino-5-oxo-5H-
furo[3,4-b]pyran-3,4,4(7H)-tricarbonitrile (3a) To a magnetically stirred
solution of tetracyanoethylene (0.13 g, 1.0 mmol) and PF-MCM-41 (0.01 g),
in CH2Cl2 (15 ml), a solution of tetronic acid (0.10 g, 1.0 mmol) in CH2Cl2
(2 ml) was added drop wise at room temperature and the reaction mixture
was stirred for 15 min. After completion of the reaction, solid catalyst was
separated from reaction mixture by filtration. Then, solvent was removed
under reduced pressure and the residue was crystallized from CH2Cl2/n-
hexane 1 : 2 to yield 0.241 g of 3a as a pink powder (90%). mp 198—200 °C.
IR (KBr) (nmax, cmꢀ1): 3424, 3338 (NH2), 2210 (CN), 1741 (CꢁO). 1H-
NMR (300 MHz, DMSO-d6) dH (ppm): 5.14 (2H, s, CH2), 8.76 (2H, bs,
27) Nunes C. D., Valente A. A., Pillinger M., Fernandes A. C., Romao C.
C., Rocha J., Goncalves I. S., J. Mater. Chem., 12, 1735—1742 (2002).