Chemistry & Biology
Pathway for B. subtilis W23 WTA Biosynthesis
Formstone, A., Carballido-Lopez, R., Noirot, P., Errington, J., and Scheffers,
D.J. (2008). Localization and interactions of teichoic acid synthetic enzymes
in Bacillus subtilis. J. Bacteriol. 190, 1812–1821.
Sadovskaya, I., Vinogradov, E., Li, J., and Jabbouri, S. (2004). Structural eluci-
dation of the extracellular and cell-wall teichoic acids of Staphylococcus epi-
dermidis RP62A, a reference biofilm-positive strain. Carbohydr. Res. 339,
1
467–1473.
Ginsberg, C., Zhang, Y.H., Yuan, Y., and Walker, S. (2006). In vitro reconstitu-
tion of two essential steps in wall teichoic acid biosynthesis. ACS Chem. Biol.
Schenk, S., and Laddaga, R.A. (1992). Improved method for electroporation of
1
, 25–28.
Staphylococcus aureus. FEMS Microbiol. Lett. 73, 133–138.
Gross, M., Cramton, S.E., Gotz, F., and Peschel, A. (2001). Key role of teichoic
acid net charge in Staphylococcus aureus colonization of artificial surfaces.
Infect. Immun. 69, 3423–3426.
Schirner, K., Marles-Wright, J., Lewis, R.J., and Errington, J. (2009). Distinct
and essential morphogenic functions for wall- and lipo-teichoic acids in
Bacillus subtilis. EMBO J. 28, 830–842.
Grundling, A., and Schneewind, O. (2007). Genes required for glycolipid
synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J. Bac-
teriol. 189, 2521–2530.
Sewell, E.W., Pereira, M.P., and Brown, E.D. (2009). The wall teichoic acid
polymerase TagF is non-processive in vitro and amenable to study using
steady state kinetic analysis. J. Biol. Chem. 284, 21132–21138.
Jarmer, H., Berka, R., Knudsen, S., and Saxild, H.H. (2002). Transcriptome
analysis documents induced competence of Bacillus subtilis during nitrogen
limiting conditions. FEMS Microbiol. Lett. 206, 197–200.
Soldo, B., Lazarevic, V., and Karamata, D. (2002). tagO is involved in the
synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology
148, 2079–2087.
Lazarevic, V., Abellan, F.X., Moller, S.B., Karamata, D., and Mauel, C. (2002).
Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis
W23 and 168: identical function, similar divergent organization, but different
regulation. Microbiology 148, 815–824.
Swoboda, J.G., Meredith, T.C., Campbell, J., Brown, S., Suzuki, T.,
Bollenbach, T., Malhowski, A.J., Kishony, R., Gilmore, M.S., and Walker, S.
(2009). Discovery of a small molecule that blocks wall teichoic acid biosyn-
thesis in Staphylococcus aureus. ACS Chem. Biol. 4, 875–883.
Lovering, A.L., Lin, L.Y., Sewell, E.W., Spreter, T., Brown, E.D., and Strynadka,
N.C. (2010). Structure of the bacterial teichoic acid polymerase TagF provides
insights into membrane association and catalysis. Nat. Struct. Mol. Biol. 17,
Swoboda, J.G., Campbell, J., Meredith, T.C., and Walker, S. (2010). Wall
teichoic acid function, biosynthesis, and inhibition. Chembiochem 11, 35–45.
Tomita, S., Furihata, K., Nukada, T., Satoh, E., Uchimura, T., and Okada, S.
582–589.
(
2009). Structures of two monomeric units of teichoic acid prepared from the
May, J.J., Finking, R., Wiegeshoff, F., Weber, T.T., Bandur, N., Koert, U., and
Marahiel, M.A. (2005). Inhibition of the D-alanine:D-alanyl carrier protein ligase
from Bacillus subtilis increases the bacterium’s susceptibility to antibiotics that
target the cell wall. FEBS J. 272, 2993–3003.
cell wall of Lactobacillus plantarum NRIC 1068. Biosci. Biotechnol. Biochem.
73, 530–535.
Vergara-Irigaray, M., Maira-Litran, T., Merino, N., Pier, G.B., Penades, J.R.,
and Lasa, I. (2008). Wall teichoic acids are dispensable for anchoring the
PNAG exopolysaccharide to the Staphylococcus aureus cell surface. Microbi-
ology 154, 865–877.
May, J.F., Splain, R.A., Brotschi, C., and Kiessling, L.L. (2009). A tethering
mechanism for length control in a processive carbohydrate polymerization.
Proc. Natl. Acad. Sci. USA 106, 11851–11856.
Vinogradov, E., Sadovskaya, I., Li, J., and Jabbouri, S. (2006). Structural
elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus
aureus MN8m, a biofilm forming strain. Carbohydr. Res. 341, 738–743.
Men, H., Park, P., Ge, M., and Walker, S. (1998). Substrate synthesis and
activity assay for MurG. J. Am. Chem. Soc. 120, 2484–2485.
Meredith, T.C., Swoboda, J.G., and Walker, S. (2008). Late-stage polyribitol
phosphate wall teichoic acid biosynthesis in Staphylococcus aureus. J. Bac-
teriol. 190, 3046–3056.
Ward, J.B. (1981). Teichoic and teichuronic acids: biosynthesis, assembly, and
location. Microbiol. Rev. 45, 211–243.
Weidenmaier, C., Kokai-Kun, J.F., Kristian, S.A., Chanturiya, T., Kalbacher, H.,
Gross, M., Nicholson, G., Neumeister, B., Mond, J.J., and Peschel, A. (2004).
Role of teichoic acids in Staphylococcus aureus nasal colonization, a major
risk factor in nosocomial infections. Nat. Med. 10, 243–245.
Nakamura, L.K., Roberts, M.S., and Cohan, F.M. (1999). Relationship of
Bacillus subtilis clades associated with strains 168 and W23: a proposal for
Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizi-
zenii subsp. nov. Int. J. Syst. Bacteriol. 49, 1211–1215.
Weidenmaier, C., Peschel, A., Xiong, Y.Q., Kristian, S.A., Dietz, K., Yeaman,
M.R., and Bayer, A.S. (2005). Lack of wall teichoic acids in Staphylococcus
aureus leads to reduced interactions with endothelial cells and to attenuated
virulence in a rabbit model of endocarditis. J. Infect. Dis. 191, 1771–1777.
Neuhaus, F.C., and Baddiley, J. (2003). A continuum of anionic charge: struc-
tures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Micro-
biol. Mol. Biol. Rev. 67, 686–723.
Oku, Y., Kurokawa, K., Matsuo, M., Yamada, S., Lee, B.L., and Sekimizu, K.
Wickham, J.R., Halye, J.L., Kashtanov, S., Khandogin, J., and Rice, C.V.
(2009). Revisiting magnesium chelation by teichoic acid with phosphorus
(2009). Pleiotropic roles of polyglycerolphosphate synthase of lipoteichoic
acid in growth of Staphylococcus aureus cells. J. Bacteriol. 191, 141–151.
solid-state NMR and theoretical calculations. J. Phys. Chem.
177–2183.
B 113,
2
Pereira, M.P., and Brown, E.D. (2004). Bifunctional catalysis by CDP-ribitol
synthase: convergent recruitment of reductase and cytidylyltransferase activ-
ities in Haemophilus influenzae and Staphylococcus aureus. Biochemistry 43,
Xia, G., Kohler, T., and Peschel, A. (2009). The wall teichoic acid and lipotei-
choic acid polymers of Staphylococcus aureus. Int. J. Med. Microbiol. 300,
148–154.
11802–11812.
Pereira, M.P., D’Elia, M.A., Troczynska, J., and Brown, E.D. (2008a). Duplica-
tion of teichoic acid biosynthetic genes in Staphylococcus aureus leads to
functionally redundant poly(ribitol phosphate) polymerases. J. Bacteriol. 190,
Ye, X.Y., Lo, M.C., Brunner, L., Walker, D., Kahne, D., and Walker, S. (2001).
Better substrates for bacterial transglycosylases. J. Am. Chem. Soc. 123,
3155–3156.
5
642–5649.
Yokoyama, K., Miyashita, T., Araki, Y., and Ito, E. (1986). Structure and func-
tions of linkage unit intermediates in the biosynthesis of ribitol teichoic acids
in Staphylococcus aureus H and Bacillus subtilis W23. Eur. J. Biochem. 161,
479–489.
Pereira, M.P., Schertzer, J.W., D’Elia, M.A., Koteva, K.P., Hughes, D.W.,
Wright, G.D., and Brown, E.D. (2008b). The wall teichoic acid polymerase
TagF efficiently synthesizes poly(glycerol phosphate) on the TagB product lipid
III. Chembiochem 9, 1385–1390.
Zhang, Y.H., Ginsberg, C., Yuan, Y., and Walker, S. (2006). Acceptor substrate
selectivity and kinetic mechanism of Bacillus subtilis TagA. Biochemistry 45,
10895–10904.
Pollack, J.H., and Neuhaus, F.C. (1994). Changes in wall teichoic acid during
the rod-sphere transition of Bacillus subtilis 168. J. Bacteriol. 176, 7252–7259.
1110 Chemistry & Biology 17, 1101–1110, October 29 , 2010 ª2010 Elsevier Ltd All rights reserved