1
00
G. Hu et al. / Chemical Physics Letters 543 (2012) 96–100
The electrocatalytic activity of the ApPd–HCNF nanocomposite
Acknowledgements
towards hydrazine oxidation was tested in 0.1 M phosphate buffer
solution (PBS, pH = 6.8). Figure 4 shows the cyclic voltammetric
This work has been supported by Vetenskapsrådet (dnr-2010
3973), Ångpanneföreningen, Gustaf Richerts stiftelse. T. Wågberg
thanks Magnus Bergvalls stiftelse, and Kempestiftelsen for gener-
ous support. T. Wågberg and G. Z Hu thanks Wenner-Gren stiftel-
sen for support. T. Sharifi thanks Kempestiftelsen for generous
support. F. Nitze thanks Gustaf Richerts stiftelse. The Knut and
Alice Wallenberg Foundations are acknowledged for an equipment
grant for the electron microscopy facilities in Stockholm University.
(
CV) curves of different electrodes in argon-saturated 0.1 M PBS
solution containing 0.01 M hydrazine. The curve in Figure 4 shows
a weak electrocatalytic oxidation for the bare glassy carbon elec-
trode with no peaks of hydrazine oxidation in the potential
window from À0.2 to 0.6 V. This is attributed to the slow heteroge-
neous electron-transfer process of hydrazine at traditional bulk
carbon materials. The HCNF-modified electrode (Figure 4, curve
b) shows a limited improvement towards hydrazine oxidation
compared to the bare GC electrode. This is ascribed to a number
of defects at the HCNFs surface. For the electrode modified with
Pd–HCNFs synthesized without the phase transfer method a weak
and broad oxidation peak (the peak potential is at 0.474 V with a
Appendix A. Supplementary data
2
current density about 1.88 mA/cm ) for the oxidation of hydrazine
can be seen (Figure 4, curve c). However, at the electrode modified
with ApPd–HCNFs that was synthesized with the phase transfer
method (Figure 4, curve d), the oxidation peak potential of hydra-
zine significantly decreases to 0.068 V and shows a very high cur-
rent density of 15.6 mA/cm2 (8 times higher than Pd–HCNFs
synthesized without phase transfer method), showing that the
ApPd–HCNF composite can effectively catalyze the electro-oxida-
tion of hydrazine. The above experimental data shows that amor-
phous ApPd–NPs on the HCNFs surface have a particularly good
electrocatalytic activity towards oxidation of hydrazine, which is
in accordance with the previous literature [25]. Additionally, the
current density of hydrazine for our material is higher than for
References
[1] K.W. Lux, K.J. Rodriguez, Nano Lett. 6 (2006) 288.
[
2] A.M. Zainoodin, S.K. Kamarudin, W.R.W. Daud, Int. J. Hydrogen Energy 35
2010) 4606.
(
[
3] C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.M. Leger, J. Power
Sources 105 (2002) 283.
[
[
4] L.D. Burke, K.J. Odwyer, Electrochim. Acta 34 (1989) 1659.
5] K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi, T. Kobayashi, Angew.
Chem. Int. Ed. 46 (2007) 8024.
[6] V. Rosca, M.T.M. Koper, Electrochim. Acta 53 (2008) 5199.
[
[
[
7] J. Prasad, J.L. Gland, Surf. Sci. 258 (1991) 67.
8] C.N.R. Rao, A.K. Cheetham, J. Mater. Chem. 11 (2001) 2887.
9] F.L. Li, B.L. Zhang, S.J. Dong, E.K. Wang, Electrochim. Acta 42 (1997) 2563.
[10] L.T. Tamaši uꢀ nait e˙ , R. Tarozait e˙ , A. Vaškelis, Chemija 17 (2006) 13.
Pd/TiO
2
and Pd/MWCNT composites in the latest reports [46–48]
[11] S.K. Singh, Q. Xu, J. Am. Chem. Soc. 131 (2009) 18032.
[
[
12] M. Hosseini, M.M. Momeni, M. Faraji, J. Mol. Catal. A Chem. 335 (2011) 199.
13] S. Ivanov, U. Lange, V. Tsakova, V.M. Mirsky, Sens. Actuators B Chem. 150
at a very low potential, indicating that the proposed materials
can be potentially used as electrocatalyst in fuel cells and as sensor
platforms.
(
2010) 271.
[14] J.M. Planeix et al., J. Am. Chem. Soc. 116 (1994) 7935.
[
[
[
15] G.Z. Hu, Y. Guo, S.J. Shao, Biosens. Bioelectron. 24 (2009) 3391.
16] E. Antolini, Appl. Catal. B Environ. 88 (2009) 1.
17] P. Canton, C. Meneghini, P. Riello, A. Balerna, A. Benedetti, J. Phys. Chem. B 105
(2001) 8088.
Helical carbon nanofibers functionalized with amorphous palla-
dium nanoparticles were synthesized using a phase-transfer route.
TEM images and XPS data show that amorphous palladium nano-
particles with diameter 3–15 nm were homogenously distributed
and very strongly anchored at the HCNF surface. We show that
the ApPd–HCNFs are highly efficient as electrocatalyst for hydra-
zine oxidation, showing a high potential for applications in direct
fuel cell, as well as in advanced sensor platforms.
[
[
18] G.S. Chai, S.B. Yoon, J.-S. Yu, J.-H. Choi, Y.-E. Sung, J. Phys. Chem. B 108 (2004)
7074.
19] P. Serp, M. Corrias, P. Kalck, Appl. Catal. A Gen. 253 (2003) 337.
[20] W.Z. Li, C.H. Liang, W.J. Zhou, J.S. Qiu, Z.H. Zhou, G.Q. Sun, Q. Xin, J. Phys. Chem.
B 107 (2003) 6292.
[
[
[
[
[
21] H.C. Choi, M. Shim, S. Bangsaruntip, H.J. Dai, J. Am. Chem. Soc. 124 (2002) 9058.
22] B. Yoon, C.M. Wai, J. Am. Chem. Soc. 127 (2005) 17174.
23] X.C. Chen, Y.Q. Hou, H. Wang, Y. Cao, J.H. He, J. Phys. Chem. C 112 (2008) 8172.
24] M. Sastry, Curr. Sci. India 85 (2003) 1735.
25] L. Chen, G.Z. Hu, G.J. Zou, S.J. Shao, X.L. Wang, Electrochem. Commun. 11
(
2009) 504.
1
1
1
1
6
4
2
0
8
6
4
2
0
2
[
[
[
[
[
[
26] G. Hu, L. Chen, Y. Guo, X. Wang, S. Shao, Electrochim. Acta 55 (2010) 4711.
27] F. Nitze, E. Abou-Hamad, T. Wågberg, Carbon 49 (2011) 1101.
28] G.Z. Hu et al., J. Power Sources 209 (2012) 236.
29] G.Z. Hu et al., J. Mater. Chem. 22 (2012) 8541.
30] F. Nitze et al., Electrochim. Acta 63 (2012) 323.
31] M. Sevilla, C. Sanchis, T. Valdes-Solis, E. Morallon, A.B. Fuertes, Electrochim.
Acta 54 (2009) 2234.
32] M.J. Lazaro, V. Celorrio, L. Calvillo, E. Pastor, R. Moliner, J. Power Sources 196
(2011) 4236.
33] L. Zhang, F. Li, Electrochim. Acta 55 (2010) 6695.
[
[
(d)
(c)
[34] S. Ci, J.F. Wen, J. Chen, Z. He, Electrochem. Commun. 14 (2012) 71.
35] A.L. Patterson, Phys. Rev. 56 (1939) 978.
[36] H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, R.H.
Friend, J. Phys. Chem. B 103 (1999) 8116.
[
[
[
[
[
[
37] H. Estrade-Szwarckopf, Carbon 42 (2004) 1713.
38] L. Chen, A. Yelon, E. Sacher, J. Phys. Chem. C 115 (2011) 7896.
39] Y. Oh, K.Y. Chun, E. Lee, Y.J. Kim, S. Baik, J. Mater. Chem. 20 (2010) 3579.
40] X. Huang, Y.P. Wang, X.P. Liao, B. Shi, Chem. Commun. (2009) 4687.
41] Y.J. Xiong, H.G. Cai, B.J. Wiley, J.G. Wang, M.J. Kim, Y.N. Xia, J. Am. Chem. Soc.
(
b)
a)
(
-
1
29 (2007) 3665.
-0.2
0.0
0.2
0.4
0.6
[
[
42] W. Lisowski, E.G. Keim, Anal. Bioanal. Chem. 396 (2010) 2797.
43] F. von Wrochem, F. Scholz, A. Yasuda, J.M. Wessels, J. Phys. Chem. C 113 (2009)
Potential / V (vs.SCE)
1
2395.
[
[
[
[
44] G.J. Ashwell et al., J. Phys. Chem. C 115 (2011) 4200.
45] B.P. Chaplin, J.R. Shapley, C.J. Werth, Environ. Sci. Technol. 41 (2007) 5491.
46] Q.F. Yi, F.J. Niu, W.Q. Yu, Thin Solid Films 519 (2011) 3155.
Figure 4. Cyclic voltammograms of hydrazine oxidation on pristine HCNFs (b, red
line), Pd–HCNFs without using phase transfer method (c, green line) and ApPd–
HCNFs using phase transfer method (d, blue line) and bare GC (a, black line)
electrodes in 10 mM hydrazine + 0.1 M PBS solution (pH = 6.8) in room tempera-
ture. Scanning rate: 50 mV/s. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
47] J.Y. Zhao, M.N. Zhu, M. Zheng, Y.W. Tang, Y. Chen, T.H. Lu, Electrochim. Acta 56
(
2011) 4930.
[
48] D.J. Guo, H.L. Li, Electrochem. Commun. 6 (2004) 999.