3
Some control experiments were conducted to get some insights
into this transformation. Firstly, when 3 equivalents of radical
scavenge 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was
added, the reaction was totally inhibited, which suggested that
the reaction probably proceeded via a radical pathway (Scheme 3,
eq. 1). To further confirm the involvement of radical in this
transformation, another radical scavenge 1,1-diphenylethenewas
used to trap the cyanomethyl radical. As expected, the formation
of product 3a was suppressed, and the coupling product 4,4-
diphenylbut-3-enenitrile (4) was obtained (Scheme 3, eq. 2).
(15KJA150001), Jiangsu Key Laboratory of Advanced
Catalytic Materials & Technology (BM2012110) and Advanced
Catalysis and Green Manufacturing Collaborative Innovation
Center for financial supports.
References and notes
1
(a) Nagamura, S.; Kobayashi, E.; Gomi, K.; Saito, H. Bioorg. Med.
Chem. 1996, 4, 1379. (b) Kleemann, A.; Engel, J.; Kutscher, B.;
Reichert, D.; Pharmaceutical Substance: Synthesis, Patents,
Applications, 4th ed., Georg Thieme: Stuttgart, 2001. (c) Fleming,
F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med.
Chem. 2010, 53, 7902.
Scheme 2. Mechanistic study
2
(a) Friedrich, K.; Wallenfels, K. In The Cyano Group; Rappoport,
Z., Ed.; Wiley: Chichester, U.K., 1970. (b) Fleming, F. F.; Wang,
Q. Chem. Rev. 2003, 103, 2035. (c) Makosza, M. Chem. Soc. Rev.
2010, 39, 2855. (d) Anbarasan, P.; Schareina, T.; Beller, M. Chem.
Soc. Rev. 2011, 40, 5049. (e) Wang, M.-X. Acc. Chem. Res. 2015
,
48, 602. (f) Lindsay-Scott, P. J.; Gallagher, P. T. Tetrahedron Lett.
2017, 58, 2629. (g) Pearson-Long, M. S. M.; Boeda, F.; Bertus, P.
Adv. Synth. Catal. 2017, 359, 179.
On basis of the above discussion and some relative previous
works, a tentative mechanism13 is outlined in Scheme 4. First, the
excited state [fac-Ir(III)(ppy)3*] is formed under light irradiation,
which is next oxidized by bromoacetonitrile 2 to generate a [fac-
Ir(IV)(ppy)3]+ complex and a CH2CN radical species A. The
difluoromethyl radical attacks the C–C double bond of olefinic
amides 1 to generate the radical intermediate B. The radical
intermediate B is then oxidized by [fac-Ir(IV)(ppy)3]+ to form the
carbocation intermediate C with the concurrent regeneration of
3
4
(a) Lýpez, R.; Palomo, C. Angew. Chem. Int. Ed. 2015, 54, 13170.
(b) Liu, Y.; Yang, K.; Ge, H. Chem. Sci. 2016, 7, 2804. (c) Wu, X.
Riedel, J. Dong, V. M. Angew. Chem., Int. Ed., 2017, 56, 11589.
(a) Chu, X.-Q.; Ge, D.; Shen, Z.-L.; Loh, T.-P. ACS Catal. 2018, 8,
258. (b) Chatalova-Sazepin, C.; Wang, Q.; Sammis, G. M.; Zhu, J.
Angew. Chem. Int. Ed. 2015, 54, 5443. (c) Ha, T. M.; Chatalova-
Sazepin, C.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2016, 55,
9249. (d) Liu, Z.-Q.; Li, Z. Chem. Commun. 2016, 52, 14278. (e)
Su, H.; Wang, L.; Rao, H.; Xu, H. Org. Lett. 2017, 19, 2226. (f)
Chu, X.-Q.; Meng, H.; Zi, Y.; Xu, X.-P.; Ji, S.-J. Org. Chem.
Front. 2015, 2, 216. (g) Gurry, M.; Aldabbagh, F. Org. Biomol.
Chem. 2016, 14, 3849. (h) Chu, X.-Q.; Xing, Z.-H.; Meng, H.; Xu,
X.-P.; Ji, S.-J. Org. Chem. Front. 2016, 3, 165. (i) Bunescu, A.;
Wang, Q.; Zhu, J. Chem. - Eur. J. 2014, 20, 14633. (j) Hu, M.;
Zou, H.-X.; Song, R.-J.; Xiang, J.-N.; Li, J.-H. Org. Lett. 2016, 18,
646.
[fac-Ir(III)(ppy)3].
Subsequent
cyclization
reaction
of
intermediate C followed by deprotonation assisted by a base give
the difluoromethylated product 3.
Scheme 3. A Tentative mechanism
5
For a recent review, see: (a) Davies, J.; Morcillo, S. P.; Douglas, J.
J.; Leonori, D. Chem.-Eur. J. 2018, 24, 12154. For selected
examples, see: (b) Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Yang, M.-
N.; Liang, D.; Xiao, W.-J. Angew. Chem. Int. Ed. 2018, 57, 738. (c)
Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Chen, J.-R.; Xiao, W.-J. Angew.
Chem. Int. Ed. 2018, 57, 15505. (d) Li, L.; Chen, H.; Mei, M.;
Zhou, L. Chem. Commun. 2017, 53, 11544. (e) Zhao, B.; Shi, Z.
Angew. Chem. Int. Ed. 2017, 56, 12727. (f) He, B.-Q.; Yu, X.-Y.;
Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54,
12262. (g) Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh,
N. S.; Leonori, D. Angew. Chem. Int. Ed. 2018, 57, 744.
In conclusion, we have developed a facile and efficient
protocol
for
the
visible-light-promoted
radical
oxycyanomethylation of olefinic amides with bromoacetonitrile
has been developed, affording a series of benzoxazine derivatives
in moderate to excellent yields. The reaction featured with
diverse functional group tolerance and mild reaction conditions.
Acknowledgments
6
(a). Zhang, W.; Yang, C.; Pan, Y.-L.; Li, X.; Cheng, J.-P. Org.
Biomol. Chem. 2018, 16, 5788. (b) Chang, Q.; Liu, Z.; Liu, P.; Yu,
L.; Sun, P. J. Org. Chem. 2017, 82, 5391. (c) Yu, Y.; Cai, Z.;
Yuan, W.; Liu, P.; Sun, P. J. Org. Chem. 2017, 82, 8148. (d)
We thank the National Natural Science Foundation of China
(nos. 21602019 and 21572025), “Innovation & Entrepreneurship
Talents” Introduction Plan of Jiangsu Province, Natural Science
Foundation of Jiangsu Province (BK20171193), the Key
University Science Research Project of Jiangsu Province