E
Synlett
S. W. Lardy, V. A. Schmidt
Synpacts
intermediate formed throughout this process explains why
the process is so well controlled, and also rationalizes the
inability of unbiased alkenes to participate.
(8) (a) Kärkäs, M. D. ACS Catal. 2017, 7, 4999. (b) Davies, J.; Morcillo,
S. P.; Douglas, J. J.; Leonori, D. Chem. Eur. J. 2018, 24, 12154.
(9) For recent examples, please see: (a) Ickes, A. R.; Ensign, S. C.;
Gupta, A. K.; Hull, K. L. J. Am. Chem. Soc. 2014, 136, 11256.
(b) Klinkenberg, J. L.; Hartwig, J. F. Angew. Chem. Int. Ed. 2011,
5
0, 86.
Future Outlook
(
10) Werner, A. Z. Anorg. Allg. Chem. 1893, 3, 267.
(
11) (a) Kim, H.; Kim, T.; Lee, D. G.; Roh, S. W.; Lee, C. Chem.
Commun. 2014, 50, 9273. (b) Allen, L. J.; Cabrera, P. J.; Lee, M.;
Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 5607.
We have developed a deoxygenative strategy to achieve
alkene aminations using N-hydroxyphthalimide derivatives
and trialkylphosphites. Current efforts in our group involve
expanding the scope of N-hydroxy-containing functional-
ities capable of serving as N-centered radical precursors to
engage in a wider range of synthetically useful processes.
(
12) (a) Day, J. C.; Katsaros, M. G.; Kocher, W. D.; Scott, A. E.; Skell, P.
S. J. Am. Chem. Soc. 1978, 100, 1950. (b) Kirsch, A.; Lüring, U. J.
Prakt. Chem./Chem.-Ztg. 1998, 340, 129. (c) Lüring, U.; Kirsch, A.
Chem. Ber. 1993, 126, 1171.
(
13) Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in
Organic Synthesis, 4th ed; Wiley: Hoboken, 2007, 790–793.
14) (a) Recupero, F.; Punta, C. Chem. Rev. 2007, 107, 3800. (b) Coseri,
S. Catal. Rev.: Sci. Eng. 2009, 51, 218. (c) Nutting, J. E.; Rafiee, M.;
Stahl, S. S. Chem. Rev. 2018, 118, 4834.
(
Funding Information
This work was supported by start-up funds provided by the Universi-
ty of California, San Diego.()
(15) Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic
Compounds; CRC Press: Boca Raton, 2003.
(
(
16) Lardy, S. W.; Schmidt, V. A. J. Am. Chem. Soc. 2018, 140, 12318.
17) (a) Cadogan, J. I. G.; Rowley, A. G. J. Chem. Soc., Perkin Trans. 2
References
1974, 2, 1030. (b) Berti, C.; Greci, L. J. Org. Chem. 1981, 46, 3060.
(
c) Mar’in, A.; Damiani, E.; Canestrari, S.; Dubs, P.; Greci, L. J.
(
(
1) Kharasch, M. S.; Jensen, E. V.; Urry, W. H. Science 1945, 102, 128.
2) (a) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519.
Chem. Soc., Perkin Trans. 2 1999, 2, 1363.
(
18) To our knowledge the BDE for the N–O bond of NHPI has not yet
been experimentally determined. Please refer to reference 15
for the available data of analogous compounds.
(
b) Quebatte, L.; Thommes, K.; Severin, K. J. Am. Chem. Soc. 2006,
28, 7440. (c) Gossage, R. A.; van de Kuil, L. A.; van Koten, G. Acc.
Chem. Res. 1998, 31, 423. (d) Clark, A. J. Chem. Soc. Rev. 2002, 31,
. (e) Minisci, F. Acc. Chem. Res. 1975, 8, 165.
1
(
19) Lardy, S. W.; Schmidt, V. A. ChemRxiv. 2019, preprint; DOI: 10
1
2
6434/chemrxiv.8479250 v1.
(3) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macro-
molecules 1995, 28, 1721.
(
20) (a) Minisci, F.; Vismara, E.; Fontana, F.; Morini, G.; Serravalle, M.
J. Org. Chem. 1986, 52, 730. (b) Pan, X.; Lacôte, E.; Lalevée, J.;
Curran, D. P. J. Am. Chem. Soc. 2012, 134, 5669. (c) Roberts, B. P.
Chem. Soc. Rev. 1999, 28, 25. (d) Giese, B.; He, J.; Mehl, W. Chem.
Ber. 1988, 121, 2063. (e) Minisci, F.; Vismara, E.; Morini, G.;
Fontana, F.; Levi, S.; Serravalle, M. J. Org. Chem. 1986, 51, 476.
(4) Wang, J.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614.
(5) Pintauer, T.; Matyjaszewski, K. Chem. Soc. Rev. 2008, 37, 1087.
(6) Kamigata, N.; Fukushima, T.; Terakawa, Y.; Yoshida, M.; Sawada,
H. J. Chem. Soc., Perkin Trans. 1 1991, 627.
(7) (a) Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1883, 16, 558.
(b) Löffler, K.; Kober, S. Ber. Dtsch. Chem. Ges. 1909, 42, 3421.
(c) Löffler, K.; Freytag, C. Ber. Dtsch. Chem. Ges. 1909, 42, 3427.
(d) Löffler, K. Ber. Dtsch. Chem. Ges. 1910, 43, 2025.
©
2019. Thieme. All rights reserved. — Synlett 2019, 30, A–E