2
+
(
Fig. S7, ESIw), showing that the binding of Hg to SQ2ÁCB8
is a reversible process.
In conclusion, we have demonstrated that H-aggregation of
the NIR-emitting dye SQ2 in aqueous solution can be effectively
controlled by forming the inclusion complex SQ2ÁCB8. The
array of the carbonyl groups at the CB8 portals provides strong
ion–dipole interaction to stabilize the complex with the positively
charged guest molecule SQ2 (in 1 : 1 ratio). Utilization of the
oxygen array from CB8, in connection with the fluorophore SQ2
2+
in the complex, leads to a highly selective and reversible Hg
sensor. On forming the inclusion complex with CB8, the binding
2
+
Fig. 5 Fluorescence response of SQ2 (5 mM) in water to Hg ion in the
presence (black squares) and absence (red circles) of 3 equiv. of CB8.
2+
strength between SQ2 and Hg can be enhanced by up to three
orders of magnitude. The example illustrates a new approach to
design and optimize the performance of fluorescent sensors by
using a supramolecular strategy.
This work was supported by The University of Akron and
Coleman endowment. We also wish to thank The National
Science Foundation (CHE-9977144) for funds used to purchase
the NMR instrument used in this work.
Notes and references
1
A. H. Stern, R. J. M. Hudson, C. W. Shade, S. Ekino,
T. Ninomiya, M. Susa, H. H. Harris, I. J. Pickering and
G. N. George, Science, 2004, 303, 763–766.
Fig. 6 Fluorescence quenching data for SQ2 (5 mM) in water with (a)
or without (b) 3 equiv. of CB8 upon addition of various metal ions
(2 equiv.).
2
(a) E. M. Nolan and S. J. Lippard, Chem. Rev., 2008, 108,
3
443–3480; (b) X. Zhang, Y. Xiao and X. Qian, Angew. Chem.,
Int. Ed., 2008, 47, 8025–8029; (c) X. Zhu, S. Fu, W. Wong, J. Guo
and W. Wong, Angew. Chem., Int. Ed., 2006, 45, 3150–3154;
To validate the selectivity of SQ2ÁCB8 in practice, various
cations are added to the solution of SQ2 under the same
(
d) D. Wu, A. B. Descalzo, F. Weik, F. Emmerling, Z. Shen,
X. You and K. Rurack, Angew. Chem., Int. Ed., 2008, 47, 193–197;
e) S. D. Choudhury, J. Mohanty, H. Pal and A. C. Bhasikuttan,
conditions (in the presence of 3 equiv. of CB8). Addition of
2
equiv. of alkali, alkaline earth metal or transition metal ions
2+
(
2
+
2+
2+
2+
2+
+
2+
3+
Mn , Zn , Cd , Cu , Fe , Ag , Pb , Cr , Co
(
,
J. Am. Chem. Soc., 2010, 132, 1395–1401.
2+
3
A. P. De Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J.
M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem.
Rev., 1997, 97, 1515–1566.
Ni ) does not induce any apparent fluorescence quenching
Fig. 6). The ratio of F/F at 675 nm (here, F indicates the
(
0
0
fluorescence intensity of free SQ2 and F675 indicates the fluores-
cence intensity upon addition of 2 molar equiv. of respective
metal ions) is examined in the presence of various other metal
4
5
S. Das, K. G. Thomas, R. Ramanathan and M. V. George,
J. Phys. Chem., 1993, 97, 13625–13628.
(a) H. S. Hewage and E. V. Anslyn, J. Am. Chem. Soc., 2009, 131,
13099–13106; (b) E. Arunkumar, A. Ajayaghosh and J. Daub,
J. Am. Chem. Soc., 2005, 127, 3156–3164.
2+
ions. For Hg , the F675/F value is almost 0.2, while the values
0
3+
for the other metal ions are approximately 1 (except for Fe , the
value is 0.4). Therefore, the host–guest supramolecular assembly
6 S. Alex, M. C. Basheer, K. T. Arun, D. Ramaiah and S. Das,
J. Phys. Chem. A, 2007, 111, 3226–3230.
2+
is a highly selective chemosensor for Hg
7 (a) J. R. Johnson, N. Fu, E. Arunkumar, W. M. Leevy,
S. T. Gammon, D. Piwnica-Worms and B. D. Smith, Angew.
Chem., Int. Ed., 2007, 46, 5528–5531; (b) E. Arunkumar,
C. C. Forbes, B. C. Noll and B. D. Smith, J. Am. Chem. Soc.,
2005, 127, 3288–3289.
.
2+
In the absence of CB8, the F675/F value for Zn cation is
0
about 0.83, indicating moderate interaction. The observation
1
is consistent with the H NMR result, which detects no
8
J. Mohanty, S. D. Choudhury, H. P. Upadhyaya,
A. C. Bhasikuttan and H. Pal, Chem.–Eur. J., 2009, 15, 5215–5219.
R. R. Avirah, K. Jyothish and D. Ramaish, Org. Lett., 2007, 9,
121–124.
binding characteristics when the SQ2 solution is titrated with
2
+
Zn
in DMSO-d (Fig. S6, ESIw). In the presence of CB8,
6
9
2+
however, the F675/F value for Zn cation is 1, indicating no
0
1
1
1
0 N. Niamnont, W. Siripornnoppakhun, P. Rashatasakhon and
M. Sukwattanasinitt, Org. Lett., 2009, 11, 2768–2771.
1 S. Gadde, E. K. Batchelaor, J. P. Weiss, Y. Ling and A. E. Kaifer,
J. Am. Chem. Soc., 2008, 130, 17114–17119.
2 (a) R. L. Halterman, J. L. Moore and L. M. Mannel, J. Org.
Chem., 2008, 73, 3266–3269; (b) S. Gadde, E. K. Batchelaor and
A. E. Kaifer, Chem.–Eur. J., 2009, 15, 6025–6031.
3 (a) J. W. Lee, S. Samal, N. Selvapalam, H. J. Kim and K. Kim,
Acc. Chem. Res., 2003, 36, 621–630; (b) J. Lagona,
P. Mukhopadhyay, S. Chakrabarti and L. Isaacs, Angew. Chem.,
Int. Ed., 2005, 44, 4844–4870.
4 P. F. Santos, L. V. Reis, I. Duarte, J. P. Serrano, P. Almeida,
A. S. Oliveira and L. F. Vieira Ferreira, Helv. Chim. Acta, 2005, 88,
1135–1143.
fluorescence response, despite the fact that DPA is a well
2
+
15
known chelator for Zn cation. It appears that the middle
segment of SQ2 is shielded by the host CB8, making the DPA
2
+
group less accessible. The trend observed from Zn
2+
true for most of the other metal ions (except Hg , Cr
is also
3+
,
3+
Fe ), exhibiting a larger F675/F
0
value in the presence of CB8
1
as the chromophore is shielded from interaction with other
cations to some extent.
2
+
The selective fluorescence quenching of SQ2ÁCB8 by Hg
1
is likely to occur via binding to the sulfur atom, which
remains accessible in the complex. High affinity of sulfur to
2
+
15 Y. Wu, X. Peng, B. Guo, J. Fan, Z. Zhang, J. Wang, A. Cui and
Y. Gao, Org. Biomol. Chem., 2005, 3, 1387–1392.
1
Hg
ion is also expected to play an important role in
1
the observed selectivity. Addition of EDTA to an aqueous
6
6 X. Chen, S. Nam, M. J. Jou, Y. Kim, S. Kim, S. Park and J. Yoon,
Org. Lett., 2008, 10, 5235–5238.
2
+
solution of SQ2ÁCB8–Hg recovers the emission of SQ2ÁCB8
This journal is ꢀc The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 4073–4075 | 4075